MCA (Revised)/BCA (Revised)

Term-End Examination

June, 2014

MCS-012: COMPUTER ORGANIZATION AND ASSEMBLY LANGUAGE PROGRAMMING

Time: 3 hours Maximum Marks: 100

(Weightage: 75%)

Note: Question no. 1 is compulsory and carries 40 marks. Attempt any three questions from the rest.

- 1. (a) Add the following using 8 bit signed 2's 6 complement representation:
 - (i) 25 and -40
 - (ii) 75 and 80
 - (b) (i) How many errors correcting bits are required to send an 8 bit data using SEC code? 2+6=8
 - (ii) If a 4 bit data 1010 is received as 1011, how this error, at bit position b1 can be detected?
 - (c) Simplify the following functions in Sum Of Product (SOP) form by using K-map. F $(A,B,C,D) = \Sigma(0,2,4,6,7,8,10)$.

		Meg	ga Byte and physical memory of 64 a Bytes. How many bits are needed to ress the	
		(i)	virtual memory	
		(ii)	physical memory	
	(e)		sider two registers R1 and R2 having ollowing 4-bit binary values :	6
		R1 =	:1100	
		R2=	1010	
			orm the following operations on R1 g R2.	
		(i)	Selective set	
		(ii)	Selective clear	
		(iii)	Selective complement	
		(iv)	Mask operation	
	(f)	Compare the following:		5
		(i)	RAM Vs ROM	
		(ii)	DRAM Vs SRAM	
	(g)	to ac	e an 8086 Assembly Language Program ld 2 byte sized values stored in memory tions FIRST and SECOND, and store result in location SUM.	6
2.	(a)	Differentiate the following :		8
		(i)	Hardwired control unit Vs Micro-programmed control unit.	
		(ii)	Unencoded micro-instructions Vs encoded micro-instructions.	
MCS_012			2	

(d) A computer supports a virtual memory of 4

	(b)	A computer has a 64 word RAM (1 word = 16 bits) and a cache memory of 8 blocks (block size = 32 bits). Find the main memory word 25 in cache if: 4+4+4=12		
		(i) Direct mapping is used		
		(ii) Associative mapping is used		
		(iii) 2-way set associative (2 blocks per set) mapping is used.		
3.	(a)	Explain the following techniques for I/O operation: 5+5=10		
		(i) Programmed I/O		
		(ii) Interrupt driven I/O		
	(b)	Explain the following terms with respect to hard disks. 6		
		(i) Access time		
		(ii) Bandwidth		
		(iii) Rotation speed		
	(c)	Find the average latency of a disk system 4 whose rotation speed is 5000 RPM.		
4.	(a)	Explain the following Addressing modes in Assembly language programming with the help of an example each.		
		(i) Register Addressing		
		(ii) Indirect Addressing		
		(iii) Relative Addressing		
	(b)	List five important characteristics of RISC 5 Architecture.		
	(c)	What is a pipeline in a computer systems? Illustrate its advantage using an Instruction pipeline.		

- 5. (a) Write an assembly language program using 8086 assembly language to find the length of a string. Make suitable assumptions.
 - (b) Explain the following terms, giving an example/diagram, if needed

6

- (i) Flip-flop
- (ii) Register
- (iii) Single precision floating point representation
- (iv) Multiplexer
- (v) Assembler
- (vi) Int 21 h
- (vii) Fetch cycle.