BACHELOR IN COMPUTER APPLICATIONS

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES
Time : 3 hours Maximum Marks : 100

Note: (i) Simple (but not scientific) calculator is allowed.
(ii) Question No. 1 is compulsory. Attempt any three from the next four questions.

1. (a) Using 8-decimal digit floating point exponent and one each for sign of exponent and mantissa), represent the following numbers in normalised floating point form :
(i) 89.36
(ii) -0.00004375
(iii) 87604
(use chopping, if required)
(b) Find the sum of two floating numbers 2 $x_{1}=.5307 \times 10^{4}$ and $x_{2}=.4252 \times 10^{3}$
(c) Find the product of the two numbers in (b) 2 above.
(d) What is underflow ? Give an example of 3 multiplication in which underflow occurs.
(e) Write the following system of linear 2 equations in matrix form :

$$
\begin{aligned}
& 5 x-9 y=14 \\
& 2 x+5 y=11
\end{aligned}
$$

(f) Solve the following system of linear equations using Gauss elimination method :

$$
\begin{aligned}
& 3 x+4 y=11 \\
& x+3 y=7
\end{aligned}
$$

(g) Find an interval in which the following equation has a root :

$$
x^{2}-7 x+12=0
$$

(h) Write formula used in Newton - Raphson3 method for finding the roots of an equation.
(i) Write the expressions which are obtained by applying each of the operators to $f(x)$; for some h :
(i) δ
(ii) E
(iii) μ
(j) Write Δ and δ in terms of E .
(k) State the following two formulae for interpolation :
(i) Newton's Forward difference formula
(ii) Stirling's formula
(l) Construct a difference table for the 2 following data :

x	1	2	3	4
$f(x)$	1	4	9	16

(m) From the Newton's Forward difference formula asked in part k (i) derive formula for finding derivative of a function $f(x)$ at x_{0}.
(n) State Trapezoidal rule for finding the integral $\int_{\mathrm{a}}^{\mathrm{b}} f(x) \mathrm{d} x$
(o) Define each of the concepts with suitable example.
(i) Degree and order of a differential equation
(ii) Initial Value Problem
2. (a) Explain the advantages of normalized floating point number over un-normalized numbers.
(b) For each of the following numbers, find floating point representation, if possible normalized, using chopping, if required. The format is 8 -digit as is mentioned in Q. No. 1 (a) :
(i) $\frac{1}{3}$
(ii) 987668

Find absolute error, if any, in each case.
(c) Let $a=234.5 \times 10^{3}, \quad b=4.789 \times 10^{3}$ and $c=-6.903 \times 10^{1}$
Find out whether ' + ' is associative or not for a, b and c ? (i.e. you have to find out whether $(a+b)+c=a+(b+c)$ or not ?
3. (a) Solve the following system of equations, using partial pivoting :

$$
\begin{aligned}
& -3 x_{1}+5 x_{2}-x_{3}=1 \\
& 5 x_{1}-4 x_{2}+2 x_{3}=3 \\
& x_{1}+x_{2}-2 x_{3}=0
\end{aligned}
$$

(b) For solving a system of linear equations:

$$
\begin{aligned}
& \mathrm{a}_{11} x_{1}+\mathrm{a}_{12} x_{2}+\mathrm{a}_{13} x_{3}=\mathrm{b}_{1} ; \\
& \mathrm{a}_{21} x_{1}+\mathrm{a}_{22} x_{2}+\mathrm{a}_{23} x_{3}=\mathrm{b}_{2} \text { and } \\
& \mathrm{a}_{31} x_{1}+\mathrm{a}_{32} x_{2}+\mathrm{a}_{33} x_{3}=\mathrm{b}_{3}, \text { by iterative } \\
& \text { Gauss-Jacobi Method, with initial } \\
& \text { approximations, } x_{1}=0=x_{2}=x_{3} \text {, give } \\
& \text { formulas for next approximations of } x_{1}, x_{2} \\
& \text { and } x_{3} .
\end{aligned}
$$

(c) What are the advantages of iterative methods over direct methods for solving a system of linear equations.
4. (a) For $f(x)=7 x^{2}-3 x+11$, find $\Delta^{3} f(x)$.
(b) Construct a difference table and mark the forward differences for the following data :

x	1	2	3	4	5
$f(x)$	7	15	20	26	35

(c) Given $f(x)=\sin x$, method of linear interpolation to find $f(0.17)$.
5. Attempt any two of (a), (b) and (c) given below :
(a) The values of $y=\sqrt{x}$ are given below for
$x=1.5(0.5) 3.5$.

x	1.5	2.0	2.5	3.0	3.5
\sqrt{x}	1.2247	1.4142	1.5811	1.7320	1.8708

Find y^{\prime} at $x=2.20$ using FD formula.
(b) Find approximate value of $\int_{2}^{3} \frac{\mathrm{~d} x}{1+x^{2}}$, using trapezoidal rule using $\mathrm{n}=1$.
(c) We are given the Initial Value Problem (IVP) $y^{\prime}=1-2 x y, y(0.2)=0.1948$ with $h=0.2$, using Euler's Method, find $y(0.4)$. The independent variable is x.

