BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2014

03753

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

Maximum Marks : 100

Note: (i) Simple (but not scientific) calculator is allowed. (ii) Question No. 1 is compulsory. Attempt any three from the next four questions.

1. (a) Using 8-decimal digit floating point 3 representation (4 digits for mantissa, 2 for exponent and one each for sign of exponent and mantissa), represent the following numbers in normalised floating point form :

- (i) 89.36
- (ii) -0.00004375
- (iii) 87604

(use chopping, if required)

- (b) Find the sum of two floating numbers 2 $x_1 = .5307 \times 10^4$ and $x_2 = .4252 \times 10^3$
- (c) Find the product of the two numbers in (b) 2 above.
- (d) What is underflow ? Give an example of 3 multiplication in which underflow occurs.
- (e) Write the following system of linear 2 equations in matrix form :

5x - 9y = 142x + 5y = 11

BCS-054

P.T.O.

(f)	Solve the following system of linear equations using Gauss elimination method : 3x + 4y = 11 x + 3y = 7							
(g)	Find an interval in which the following equation has a root : $x^2 - 7x + 12 = 0$							
(h)	Write formula used in Newton - Raphson method for finding the roots of an equation.							
(i)	Write the expressions which are obtained by applying each of the operators to $f(x)$; for some h :							
(*)	(i) δ (ii) E (iii) μ							
(j)	Write Δ and δ in terms of E.	2 3						
(k)	State the following two formulae for interpolation : (i) Newton's Forward difference formula	3						
(1)	(ii) Stirling's formula Construct a difference table for the	2						
	following data :	-						
	x 1 2 3 4							
	f(x) 1 4 9 16							
(m)	From the Newton's Forward difference formula asked in part k (i) derive formula for finding derivative of a function $f(x)$ at	3						
	x _o .							
(n)	State Trapezoidal rule for finding the	3						
	integral $\int_{a}^{b} f(x) dx$							
(0)	Define each of the concepts with suitable example.	4						
	(i) Degree and order of a differential equation							
	(ii) Initial Value Problem							
	2							

BCS-054

2

(a) Explain the advantages of normalized floating point number over un-normalized numbers.

 (b) For each of the following numbers, find floating point representation, if possible normalized, using chopping, if required. The format is 8-digit as is mentioned in Q. No. 1 (a) :

(i)
$$\frac{1}{3}$$
 (ii) 987668

Find absolute error, if any, in each case.

 $a = 234.5 \times 10^3$, $b = 4.789 \times 10^{3}$ 10 Let (c) and $c = -6.903 \times 10^{1}$ Find out whether '+' is associative or not

for a, b and c ? (i.e. you have to find out whether (a+b)+c = a+(b+c) or not ?

3. (a) Solve the following system of equations, 12 using partial pivoting :

 $-3x_1 + 5x_2 - x_3 = 1$ $5x_1 - 4x_2 + 2x_3 = 3$ $x_1 + x_2 - 2x_3 = 0$

(b) For solving a system of linear equations :

4

4

 $a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1;$ $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2$ and $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3$, by iterative Gauss-Jacobi Method, with initial approximations, $x_1 = 0 = x_2 = x_3$, give formulas for next approximations of x_1, x_2 and x_3 .

(c) What are the advantages of iterative methods over direct methods for solving a system of linear equations.

3

BCS-054

2.

P.T.O.

6

4

4.

(b)

- (a) For $f(x) = 7x^2 3x + 11$, find $\Delta^3 f(x)$.
 - Construct a difference table and mark the forward differences for the following data :

x	1	2	3	4	5
f(x)	7	15	20	26	35

- (c) Given f(x) = sinx, $f(0.1) = 0.09983 \ f(0.2) = 0.19867$; use the method of linear interpolation to find f(0.17).
- 5. Attempt **any two** of (a), (b) and (c) given below :
 - (a) The values of $y = \sqrt{x}$ are given below for x = 1.5(0.5)3.5.

x	1.5	2.0	2.5	3.0	3.5			
\sqrt{x}	1.2247	1.4142	1.5811	1.7320	1.8708			
Find w' at $w = 2.20$ up in a ED (1								

Find y' at x = 2.20 using FD formula.

- (b) Find approximate value of $\int_2^3 \frac{dx}{1+x^2}$, using **10** trapezoidal rule using n=1.
- (c) We are given the Initial Value Problem (IVP) **10** y' = 1 - 2xy, y(0.2) = 0.1948 with h = 0.2, using Euler's Method, find y(0.4). The independent variable is *x*.

BCS-054

4

6 8

6

10