BACHELOR OF COMPUTER APPLICATIONS (Revised)
 Term-End Examination
 June, 2014
 BCS-042 : INTRODUCTION TO ALGORITHM DESIGN

Time : $\mathbf{2}$ hours \quad Maximum Marks : 50
Note: (i) Question number 1 is compulsory.
(ii) Answer any three from the rest.
(iii) Pseudo code should be nearer to

C-Programming language notation

SECTION - A

1. (a) Given the following list of 8 integers, sort 8 them using insertion sort. Determine the number of comparisons used by the sorting algorithm as well as the total number of assignment operations.

25	15	7	10	8	12	6	13

Show the process of sorting.
(b) Define Θ (big theta) notation. By using a 4 basic definition show that $5 n^{2}+9 n-8=\Theta\left(n^{2}\right)$.
(c) Draw all the spanning trees of the following 3 weighted connected graph.

(d) What is recurrence relation? What is an initial condition ? Define recurrence relation and initial conditions for the followings :
(i) Fibonacci sequence
(ii) Factorial function

SECTION - B

2. Define a fractional knapsack problem. Find the 10 optimal solution to the following instance of a knapsack problem. Show step by step running of the algorithm.
Number of object; $\mathrm{n}=5$
Capacity of knapsack ; $\mathrm{M}=10$
$\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}\right)=(12,32,40,30,50)$
Where P_{i} is profit
and
$\left(W_{1}, W_{2}, W_{3}, W_{4}, W_{5}\right)=(4,8,2,6,1)$
Where W_{i} - is weight
Each object has a profit P_{i} and weight W_{i}. The problem is to fill a knapsack (up to its maximum capacity M) which maximises the total profit earned.
3. Write kruskal's algorithm and apply it to find a MST of the following graph also discuss complexity of the algorithm.

4. (a) Define the following terms:
(i) Mathematical Induction
(ii) Dynamic programming technique
(iii) Optimization problem
(iv) Single source shortest path problem
(b) What is a complete graph. Draw a complete graph with four vertics.
5. (a) For the given graph, write DFS and BFS travel sequence from the node A.

(b) Arrange the following growth rates in increasing order :
$0\left(3^{n}\right), 0\left(\mathrm{n}^{2}\right), 0(1), 0(\mathrm{n} \log \mathrm{n})$
