BACHELOR OF COMPUTER APPLICATIONS (Revised) Term-End Examination

June, 2014

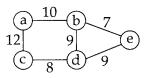
BCS-042 : INTRODUCTION TO ALGORITHM DESIGN

Time : 2 hours

03619

Maximum	Marks	÷	50
IVIULIUUU	1 1 101 100	•	00

Note :	<i>(i)</i>	Question number 1 is compulsory. Answer any three from the rest.					
	(ii)						
	(iii)	Pseudo	code	should	be	nearer	to
		C-Programming language notation					


SECTION - A

(a) Given the following list of 8 integers, sort 8 them using insertion sort. Determine the number of comparisons used by the sorting algorithm as well as the total number of assignment operations.

25	15	7	10	8	12	6	13
Show the process of sorting							

Show the process of sorting.

- (b) Define Θ (big theta) notation. By using a 4 basic definition show that $5n^2 + 9n 8 = \Theta(n^2)$.
- (c) Draw all the spanning trees of the following 3 weighted connected graph.

BCS-042

P.T.O.

- (d) What is recurrence relation ? What is an 5 initial condition ? Define recurrence relation and initial conditions for the followings :
 - (i) Fibonacci sequence
 - (ii) Factorial function

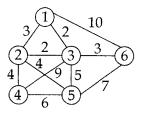
SECTION - B

Define a fractional knapsack problem. Find the 10 optimal solution to the following instance of a knapsack problem. Show step by step running of the algorithm.

Number of object ; n = 5

Capacity of knapsack ; M = 10

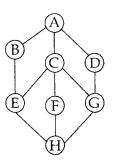
 $(P_1, P_2, P_3, P_4, P_5) = (12, 32, 40, 30, 50)$


Where P_i is profit

and

 $(W_1, W_2, W_3, W_4, W_5) = (4, 8, 2, 6, 1)$ Where W_i - is weight

Each object has a profit P_i and weight W_i . The problem is to fill a knapsack (up to its maximum capacity M) which maximises the total profit earned.


3. Write kruskal's algorithm and apply it to find a **10** MST of the following graph also discuss complexity of the algorithm.

- 4. (a) Define the following terms :
 - (i) Mathematical Induction
 - (ii) Dynamic programming technique
 - (iii) Optimization problem
 - (iv) Single source shortest path problem

8

- (b) What is a complete graph. Draw a complete **2** graph with four vertics.
- 5. (a) For the given graph, write DFS and BFS 8 travel sequence from the node A.

(b) Arrange the following growth rates in **2** increasing order : $0(3^n)$, $0(n^2)$, 0(1), $0(n\log n)$