BACHELOR OF COMPUTER APPLICATIONS (Revised)

Term-End Examination

June, 2014

BCS-012 : BASIC MATHEMATICS

Time : 3 hours
Maximum Marks : 100
Note: Question No. 1 is compulsory. Attempt any three questions from the remaining four questions.

1. (a) Show that the points $(a, b+c),(b, c+a)$ and 5 ($c, a+b$) are collinear.
(b) If $A=\left[\begin{array}{rr}2 & -1 \\ 3 & 2\end{array}\right]$, find $4 A-A^{2}$.
(c) Use the principle of mathematical induction5 to show that :

$$
\begin{aligned}
& 1^{2}+2^{2}+\ldots \ldots . .+n^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
& \forall n \in N .
\end{aligned}
$$

(d) Find the smallest positive integer n for which

$$
\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^{n}=1
$$

(e) A positive number exceeds its square root 5 by 30 . Find the number.
(f) If $y=\frac{\ln x}{x^{2}}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(g) Show that for any vector \vec{a}, $\quad 5$

$$
\hat{i} \times(\overrightarrow{\mathrm{a}} \times \hat{i})+\hat{j} \times(\overrightarrow{\mathrm{a}} \times \hat{j})+\hat{k} \times(\overrightarrow{\mathrm{a}} \times \hat{k})=2 \overrightarrow{\mathrm{a}}
$$

(h) Find an equation of the line through

$$
\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-2}{2} .
$$

2. (a) Find inverse of the matrix 5

$$
A=\left[\begin{array}{lll}
1 & 2 & 5 \\
2 & 3 & 1 \\
-1 & 1 & 1
\end{array}\right]
$$

(b) Reduce the matrix $\mathrm{A}=\left[\begin{array}{rrr}5 & 3 & 8 \\ 0 & 1 & 1 \\ 1 & -1 & 0\end{array}\right]$ to 5 normal form by elementary operations.
(c) Solve the system of linear equations
$2 x-y+z=5$
$3 x+2 y-z=7$
$4 x+5 y-5 z=9$
by matrix method.
3. (a) Use DeMoivre's theorem to put $(\sqrt{3}+i)^{3}$ in 5 the form $\mathrm{a}+\mathrm{b} i$.
(b) Find the sum to n terms of the series 5 $0.7+0.77+0.777+\ldots \ldots+$ upto n terms.
(c) If one root of the quadratic equation 5 $a x^{2}+b x+c=0$ is square of the other root, show that $b^{3}+a^{2} c+a c^{2}=3 a b c$.
(d) The cost of manufacturing x mobile sets by 5 Josh Mobiles is given by $\mathrm{C}=3000+200 x$ and the revenue from selling x mobiles is given by $300 x$. How many mobiles must be produced to get a profit of $₹ 7,03,000$ or more.
4. (a) If $y=\mathrm{ae}^{\mathrm{m} x}+\mathrm{be}^{-\mathrm{m} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\mathrm{k} y$, find the 5 value of k in terms of m .
(b) A man 180 cm tall walks at a rate of $2 \mathrm{~m} / \mathrm{s}$

5 away from a source of light that is 9 m above the ground. How fast is the length of his shadow increasing when he is 3 m away from the base of light ?
(c) Evaluate the integral $\int \frac{x}{(x+1)(2 x-1)} \mathrm{d} x$.
(d) Find length of the curve $y=2 x^{3 / 2}$ from 5 $(1,2)$ to $(4,16)$.
5. (a) For any two vectors \vec{a} and \vec{b}, prove that 5

$$
|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|
$$

(b) Find the shortest distance between $\overrightarrow{r_{1}}$ and

$$
\overrightarrow{\mathrm{r}_{2}} \text { given below : }
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}_{1}}=(1+\lambda) \hat{i}+(2-\lambda) \hat{j}+(1+\lambda) \hat{k} \\
& \overrightarrow{\mathrm{r}_{2}}=2(1+\mu) \hat{i}+(1-\mu) \hat{j}+(-1+2 \mu) \hat{k}
\end{aligned}
$$

(c) A tailor needs at least 40 large buttons and $\quad \mathbf{1 0}$
60 small buttons. In the market, buttons are
available in boxes and cards. A box contains
6 large and 2 small buttons and a card
contains 2 large and 4 small buttons. If the
cost of a box is $₹ 3$ and that of card is $₹ 2$,
find how many boxes and cards should he
buy so as to minimize the expenditure?

