M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination

June, 2013

00322

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time : 2 hours
Maximum Marks : 50 (Weightage: 50%)
Note: Question No. 7 is Compulsory. Attempt any four questions from Q. No. 1 to 6 . Use of calculator is not allowed.

1. (a) Consider a local area network of inter 10
connected workstations that communicate
using Ethernet protocols at a maximum rate
of 10 M bit/s. Traffic rates on the network
can be expressed as the peak value of the
total bandwidth (BW) used, and the two
fuzzy variables, "Quiet" and "Congested",
can be used to describe the perceived
loading of the LAN. If the discrete universal
set $X=\{0,1,2,5,7,9,10\}$ represents band
width usage, then the membership grades
of these elements in the fuzzy sets quiet Q
and congested C are given in the table and
Fig.1.

$x(\mathrm{BW}), \mathrm{M}$ bit/s	$\mu_{\mathrm{Q}}(x)$	$\mu_{\mathrm{c}}(x)$
0	1.0	0.0
1	1.0	0.0
2	0.8	0.0
5	0.3	0.4
7	0.1	0.6
9	0.0	0.8
10	0.0	1.0

Fig. 1 : Membership functions of quiet and congested.
(b) For these two fuzzy sets find the union, intersection, complement of Q, difference $Q-C$, and verify any one of Demorgan's law
(i) graphically and
(ii) numerically.
2. (a) Given a fuzzy set A with the membership function given fig 2 .

Derive $\mu_{\mathrm{A}}(x)$ as a mathematical function.
(b) Use a binary-coded Genetic algorithm (GA) to minimize the function
f $\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-2 x_{1}{ }^{2}-x_{2}{ }^{2}+$ x_{1}, x_{2}, in the range of $0 \leq x_{1}, x_{2} \leq 5$.
Use a random population of size $\mathrm{N}=6$, a single point crossover with probability $P_{c}=1$ and neglect mutation. Assume 3 bits for each variable and thus the GA - string will be 6 - bits long. Show only one iteration by hand calculation.
3. (a) Consider the single layer perception given 6 in Fig 3.

Fig. 3
7. Which of the following statements are true or false. Give reasons for your answers.
(a) The support of a fuzzy set A is same as the α-cut of a fuzzy set A.
(b) The Manhattan distance and the Mink Owski distance are same for some condition.
(c) The input to a single input neuron is 2, its weight is 2.3 and its bias is -3 . The neuron output for Linear transfer function is -1 .
(d) The SOM is useful for classification.
(c) The length and order of the schema $S=\left(0^{* *} 11^{*} 0^{* *}\right)$ are 6 and 3 respectively.

The activation function is given by

$$
\phi(v)=\left\{\begin{array}{l}
1 ; v \geqslant 0 \\
0 ; v<0
\end{array}\right.
$$

Calculate the output y of the unit for each of the following input pattern :

Patterns	p_{1}	p_{2}	p_{3}	p_{4}
x_{1}	1	0	1	1
x_{2}	0	1	0	1
x_{3}	0	1	1	1

(b) Describe the Binary Hopfield network with the help of an example.
4. (a) Define the following operations in Genetic 4 algorithm with one example of each.
(i) Crossover
(ii) Mutation
(b) Consider the ADALINE filter with three neurons in the input layer having weights $W_{11}=3, W_{12}=1$ and $W_{13}=-2$ and the input sequence.

$$
\{\cdots, 0,0,0,-4,5,0,0,0 \cdots\}
$$

What is the filter output?
5. (a) If the input vectors are $I_{1}=[-1,0]^{T}$, and $I_{2}=[0,1]^{T}$, and the initial values of two weight vectors are $[0,1]^{\mathrm{T}}$ and $\left[\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right]$ calculate the resulting weight found after training the competitive layer with the Kohonen's rule and a learning rate α of 0.4 on the input series in order I_{1}, and I_{2}.
(b) Differentiate between bounded sum and algebric sum of two fuzzy sets.
6. (a) What do you mean by a feed - forward neural network ? Using diagram, show how it differs from a recurrent neural network.
(b) Consider the two parents which are 6 participating in partially mapped cross over as shown below :

Parent $1: \quad C D|E A B I| H G F$
Parent $2: \quad A B|C D E F| G H I$

Using partially mapped crossover assuming $2^{\text {nd }}$ and $6^{\text {th }}$ as the crossover sites, find the children solution.

