No. of Printed Pages : 6

MMTE-007

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

June, 2013

00322

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time: 2 hours

Maximum Marks: 50

(Weightage: 50%)

Note: Question No. 7 is **Compulsory**. Attempt **any four** questions from Q. No. 1 to 6. Use of calculator is **not** allowed.

Consider a local area network of inter 1. (a) connected workstations that communicate using Ethernet protocols at a maximum rate of 10 M bit/s. Traffic rates on the network can be expressed as the peak value of the total bandwidth (BW) used, and the two fuzzy variables, "Quiet" and " Congested", can be used to describe the perceived loading of the LAN. If the discrete universal set $X = \{0, 1, 2, 5, 7, 9, 10\}$ represents band width usage, then the membership grades of these elements in the fuzzy sets quiet Q and congested C are given in the table and Fig.1.

10

x (BW), M bit/s	$\mu_{Q}(x)$	$\mu_c(x)$	
0	1.0	0.0	
1	1.0	0.0	
2	0.8	0.0	
5	0.3	0.4	
7	0.1	0.6	
9	0.0	0.8	
10	0.0	1.0	

Fig. 1 : Membership functions of quiet and congested.

- (b) For these two fuzzy sets find the union, intersection, complement of Q, difference Q C, and verify any one of Demorgan's law
 - (i) graphically and
 - (ii) numerically.

2. (a) Given a fuzzy set A with the membership 4 function given fig 2.

Derive $\mu_A(x)$ as a mathematical function.

6

(b) Use a binary-coded Genetic algorithm (GA) to minimize the function

f
$$(x_1, x_2) = x_1 + x_2 - 2x_1^2 - x_2^2 + x_1, x_2$$
, in the range of $0 \le x_1, x_2 \le 5$.

Use a random population of size N=6, a single point crossover with probability $P_c=1$ and neglect mutation. Assume 3 bits for each variable and thus the GA - string will be 6 - bits long. Show only one iteration by hand calculation.

3. (a) Consider the single layer perception given 6 in Fig 3.

- 7. Which of the following statements are **true** or **10 false**. Give reasons for your answers.
 - (a) The support of a fuzzy set A is same as the α cut of a fuzzy set A.
 - (b) The Manhattan distance and the Mink Owski distance are same for some condition.
 - (c) The input to a single input neuron is 2, its weight is 2.3 and its bias is -3. The neuron output for Linear transfer function is -1.
 - (d) The SOM is useful for classification.
 - (e) The length and order of the schema S = (0**11*0**) are 6 and 3 respectively.

The activation function is given by

$$\phi(v) = \begin{cases} 1 ; v \ge 0 \\ 0 ; v < 0 \end{cases}$$

Calculate the output y of the unit for each of the following input pattern:

Patterns	p_1	p ₂	p ₃	p_4
x 1	1	0	1	1
x_2	0	1	0	1
х 3	0	1	1	1

- (b) Describe the Binary Hopfield network with 4 the help of an example.
- 4. (a) Define the following operations in Genetic 4 algorithm with one example of each.
 - (i) Crossover
 - (ii) Mutation
 - (b) Consider the ADALINE filter with three neurons in the input layer having weights $W_{11} = 3$, $W_{12} = 1$ and $W_{13} = -2$ and the input sequence.

$$\{----, 0, 0, 0, -4, 5, 0, 0, 0 ----\}$$

What is the filter output?

- 5. (a) If the input vectors are $I_1 = [-1, 0]^T$, and $I_2 = [0, 1]^T$, and the initial values of two weight vectors are $[0, 1]^T$ and $[\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}]$ calculate the resulting weight found after training the competitive layer with the Kohonen's rule and a learning rate α of 0.4
 - (b) Differentiate between bounded sum and algebric sum of two fuzzy sets.

on the input series in order I_1 , and I_2 .

- 6. (a) What do you mean by a feed forward 4 neural network? Using diagram, show how it differs from a recurrent neural network.
 - (b) Consider the two parents which are participating in partially mapped cross over as shown below:

Parent 1 : CD|EABI|HGF

Parent 2 : $A B \mid C D E F \mid G H I$

Using partially mapped crossover assuming 2nd and 6th as the crossover sites, find the children solution.

6

8