M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
June, 2013

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours
Maximum Marks : 50
Note : Attempt any five questions. Calculators are not allowed.
1.
(a) Check whether polynomial 4 $\mathrm{f}(x)=x^{3}-3 x^{2}+2 x+1$ is irreducible over the field of rationals Q. Is it irreducible over Z ? Justify your answer.
(b) Explain the construction of the S-box in 6 ABS. Also explain the design considerations behind the construction.
2. (a) Find $5^{17} \bmod 31$ using repeated squaring 3 algorithm.
(b) Describe the OFB and CTR modes of 4 encryption.
(c) Explain the El Gamal crypto system, clearly 3 stating which information is kept private and which information is made public.
P.T.O.
3.
(a) Construct the multiplicative group of Residues modulo 15 and prove that it is not cyclic.
(b) (i) Write down the recurrance for the following LFSR:

(ii) Construct the LFSR corresponding to the recurrence

$$
x_{m+5} \equiv x_{m+4}+x_{m+2}+x_{m+1}+x_{m}(\bmod 2)
$$

4. (a) Explain confidentiality and data integrity. Distinguish between them.
(b) Check whether the following sequence 6 satisfies the frequency test and serial.

110111011011001111010111010000101100001001
You may like to use the following values:

$$
\chi_{0.05,1}^{2}=3.84146 \quad \chi_{0.05,2}^{2}=5.99146
$$

5. (a) The following lipher text was encrypted using affine cipher. DSXXA

The plain text starts with HA. Decrypt the message.
(b) Suppose you know that $\mathrm{n}=5293$ and 3 $\phi(n)=5148$. Factorise ' n ' using this information.
(c) What is the probability of finding a collision 3 in MD5 according to the birthday paradox? Why MD5 considered as broken now ?
6. (a) Decrypt the following cipher text which was 4 encrypted using the Vigenere cipher with the key word "ORDERS" "GLVKVLCDRVIGK". Is the Vigenere cipher a transposition cipher or a substitution cipher ? Justify your answer.

(b) Describe the Blum - Blum shut generator for
generating pseudo random bits.
(c) Explain the following: $\mathbf{4}$
(i) Diffie Hellman decision problem
(ii) Diffie Hellman computational problem.

