Term-End Examination
June, 2013

MMTE-005 : CODING THEORY
Time : $\mathbf{2}$ hours
Maximum Marks : 50 (Weightage 50\%)

Note: (i) Answer any five questions from questions 1 to 6.
(ii) Calculators are not allowed.

1. (a) Explain the following terms with the help 3 of an example.
(i) Linear block code
(ii) Generator matrix
(iii) Parity check matrix
(b) Find the dual code of the binary code 4 generated by the matrix.
$G=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$
(c) Let r be an integer with $0 \leq r \leq m$. Prove 3 that the dimension of $R(r, m)$ is $\mathrm{mc}_{0}+\mathrm{mc}_{1}+\ldots .+\mathrm{mc}_{\mathrm{r}}$.
2. (a) Explain the binary symmetric channel with the help of a diagram.
(b) Construct a finite field with 8 elements.

5
(c) Find the parity check matrix of a Hamming 2 Code C whose generator matrix is given below :

$$
\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

3. (a) Prove that a self orthogonal binary cyclic code is doubly even.
(b) Define BCH code and show that the BCH 3 code of design distance δ has minimum weight at least δ.
(c) Define quadratic residue code.

2
4. (a) For the binary code with the following 5 generator matrix ' G ' find the weight distribution polynomial.
$G=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1\end{array}\right]$
(b) Let $\mathrm{f}(x)$ and $\mathrm{g}(x)$ be polynomials in $\mathrm{Z}_{4}[\mathrm{x}]$. $\mu[\mathrm{f}(x)]$ and $\mu(\mathrm{g}(x))$ are coprime in $\mathrm{F}_{2}[\mathrm{x}]$, where $\mu: Z_{4}(x) \rightarrow Z_{2}(x)$ is defined by $\mu(\mathrm{f}(x))=\mathrm{f}(x)(\bmod 2)$
5. (a) Let C be a $(4,2)$ convolutional code with generator matrix ' G '

$$
G=\left[\begin{array}{cccc}
1 & 1+D+D^{2} & 1+D^{2} & 1+D \\
0 & 1+D & D & 1
\end{array}\right]
$$

Use elementary row operations to find ' 2 ' more generator matrices for C.
(b) Obtain the Tanner graph of the code whose 4 parity check matrix is given below :

$$
H=\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

6. (a) Let C be the Z_{4}-linear code of length 3 with 4 generator matrix

$$
G=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

(i) List all codewords in C.
(ii) List all the codewords in the gray image of C.
(b) Find the generator polynomial and the minimum distance of Rs. $[15,11]$ code.
(c) Let C be a $(10,2,4)$ LDPC code with parity check matrix

$$
\mathrm{H}=\left[\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The received code vector is $(000011) 000^{T}$ Decode the message.

