M.Sc. (MATHEMATICS WTTH APPLICATIONS

 IN COMPUTER SCIENCE)M.Sc. (MACS)

Term-End Examination
June, 2013

MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time : $\mathbf{2}$ hours

Maximum Marks : 50
(Weightage : 50\%)

Note : Attempt any five questions. All questions carry equal marks. Use of Calculator is not allowed.

1. (a) Explain the following with one example of 4 each.
(i) Histogram matching.
(ii) Laplace filter in frequency domain.
(b) Perform the linear convolution between 6 $x(\mathrm{~m}, \mathrm{n})$ and $\mathrm{h}(\mathrm{m}, \mathrm{n})$ where

$$
x(\mathrm{~m}, \mathrm{n})=\left(\begin{array}{lll}
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) h(\mathrm{~m}, \mathrm{n})=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

2. (a) Discuss various distance measures in an 4 image.
(b) A zero mean vector $[B]_{2 \times 1}$ is unitarily
transformed. Given $A=\frac{1}{2}\left[\begin{array}{cc}\sqrt{3} & 1 \\ -1 & \sqrt{3}\end{array}\right] B$,
and $R_{u}=\left[\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right], 0<\rho<1$.
Obtain covariance matrix R_{A}. Also obtain correlation between $A(0)$ and $A(1)$, if $\rho=0.95$.
3. (a) Derive the following properties of 2D Fourier transform.
(i) Translation
(ii) Rotation
(b) Derive the expression for optimum Notch filter.
4. (a) Compute the mean value of the masked

4
pixel given as $\left[\begin{array}{lll}1 & 5 & 7 \\ 2 & 4 & 6 \\ 3 & 2 & 1\end{array}\right]$ using 3×3 mask.
(b) The basis image of 2D unitary transform of size 2×2 are

$$
\begin{aligned}
& \mathrm{H}_{1}=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \mathrm{H}_{2}=\frac{1}{2}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right], \\
& \mathrm{H}_{3}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right], \mathrm{H}_{4}=\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

Determine the transform coefficient if input image is $\left[\begin{array}{ll}6 & 4 \\ 2 & 1\end{array}\right]$
5. (a) Obtain the median value of the marked pixel 4 given as
$\left[\begin{array}{cccccc}18 & 22 & 33 & 25 & 32 & 24 \\ 34 & 128 & (24) & 172) & (26) & 23 \\ 22 & 19 & 32 & 31 & 28 & 26\end{array}\right]$

Using 3×3 mask.
(b) A source emits four symbols (a, b, c, d) with 6 probability ($0.4,0.2,0.1,0.3$) respectively. Perform arithmetic coding to encode and decode the word 'dad'.
6. (a) Explain any three boundary descriptors 3 with examples.
(b) Consider an image $X=\left[\begin{array}{ll}5 & 0 \\ 0 & 0\end{array}\right]$ and the pixel 5 value 5 has to be replicated. Write the steps involved in replication.
(c) Obtain the value of pixel encircled, if it is 2 smoothened by a 3×3 window

$$
\mathrm{w}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & (4) & 5 \\
3 & 4 & 3
\end{array}\right]
$$

