M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) (MACS) M.Sc. (MACS)

Term-End Examination

June, 2013

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 hours

Maximum Marks : 50
Note: Do any five questions from questions 1 to 6. Calculators are not allowed

1. (a) Explain what is an algorithm with the help 2 of an example.
(b) Sort the following sequence of numbers 3 using INSERTION SORT showing all the steps 8,2,4,3,1,5.
(c) Build a max heap by successive insertion of 5 the following sequence of data : 5, 3, 17, 10, 84, 19.
2. (a) Explain the counting sort algorithm using 5 the following array :
$\{3,5,2,3,4,1,2,1,4,3\}$
(b) State the properties of a B-tree. Verify whether the following is a B-tree.

3. (a) Give in pseudo code the MERGE procedure of MERGE SORT algorithm. Explain it with the following arrays.

2	4	6	8	1	3	5	9

(b) Illustrate the Depth-first search algorithm using the following graph, starting form v_{1}.

4. (a) Find a minimal spanning tree of the following graph using Prim's algorithm.

(b) Find the longest common subsequence of the following string using Dynamic Programming :
$X=(D, C, B, C, A, D, C)$
$Y=(C, A, B, D, C, D)$
5. (a) Show the comparisons that the naine string matches makes for the pattern $P=a a a b$ and $T=$ abaaababaaab.
(b) Define a flow network. Show that, if f_{1} 3 and f_{2} are flows, $\alpha f_{1}+\beta f_{2}$ is also a flow where $\alpha+\beta=1,0 \leq \alpha, \beta \leq 1$.
(c) Let $f(n)=2^{3}+4^{3}+6^{3}+\ldots+(2 n)^{3}$. Find a
function $g(n)$ such that $f(n)=\Theta(g(n))$.
6. (a) Give the recursive fast fourier transform algorithm in pseudo code. Illustrate it using the vector $(0,1,2,3)$.
(b) For the polynomials $\mathrm{f}(x)=x^{2}+1$ and $g(x)=x^{2}-x-1$, find the point value representation using the points $[1,-1, i,-i]$. Use the representation to multiply the polynomials.

