No. of Printed Pages : 3

MMTE-002

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) (MACS) M.Sc. (MACS)

Term-End Examination

June, 2013

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 hours

Maximum Marks : 50

Note : Do any five questions from questions **1** to **6**. Calculators are not allowed

- (a) Explain what is an algorithm with the help 2 of an example.
 - (b) Sort the following sequence of numbers 3 using INSERTION SORT showing all the steps 8,2,4,3,1,5.
 - (c) Build a max heap by successive insertion of 5 the following sequence of data : 5, 3, 17, 10, 84, 19.
- 2. (a) Explain the counting sort algorithm using 5 the following array :

1

{3, 5, 2, 3, 4, 1, 2, 1, 4, 3}

MMTE-002

P.T.O.

(b) State the properties of a B-tree. Verify whether the following is a B-tree.

5

3. (a) Give in pseudo code the MERGE procedure 6 of MERGE SORT algorithm. Explain it with the following arrays.

(b) Illustrate the Depth-first search algorithm 4 using the following graph, starting form v₁.

4. (a) Find a minimal spanning tree of the **5** following graph using Prim's algorithm.

MMTE-002

- (b) Find the longest common subsequence of the 5 following string using Dynamic Programming :
 X = (D, C, B, C, A, D, C)
 Y = (C, A, B, D, C, D)
- 5. (a) Show the comparisons that the naine string 4 matches makes for the pattern
 P = aaab and T = abaaababaaab.
 - (b) Define a flow network. Show that, if f_1 **3** and f_2 are flows, $\alpha f_1 + \beta f_2$ is also a flow where $\alpha + \beta = 1$, $0 \le \alpha$, $\beta \le 1$.
 - (c) Let $f(n) = 2^3 + 4^3 + 6^3 + ... + (2n)^3$. Find a 3 function g(n) such that $f(n) = \Theta(g(n))$.
- 6. (a) Give the recursive fast fourier transform
 algorithm in pseudo code. Illustrate it using the vector (0, 1, 2, 3).
 - (b) For the polynomials $f(x) = x^2 + 1$ and 4 $g(x) = x^2 - x - 1$, find the point value representation using the points [1, -1, i, -i]. Use the representation to multiply the polynomials.

MMTE-002

3