M.Sc. (MATHEMATICS WITH
 APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination 00842

June, 2013

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : $\mathbf{2}$ hours
Maximum Marks : 50
(Weightage: 50\%)
Note: Question No. 1 is compulsory. Do any four questions out of question nos. 2 to 7 . Use of calculator is not allowed.

1. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example. $2 \times 5=10$
(a) The solution of differential equation $x y^{\prime \prime}-y^{\prime}+x y=0$ is $y=\mathrm{AJ}_{1}(x)$, where $\mathrm{J}_{1}(x)$ is a Bessel function of order one.
(b) The initial-value problem

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y+1}{x^{2}}, y(0)=1 \text { has an infinity of }
$$

solutions.
(c) Crank-Nicolson method for onedimensional heat equation is unstable.
(d) The interval of absolute stability for all second order Runge-Kutta methods is] $-2.78,0[$.
(e) Representation of $f(x)=\mathrm{e}^{-\mathrm{k} x}, x \geqslant 0, \mathrm{k}$ a positive constant, by a Fourier sine integral
is $f(x)=\mathrm{e}^{-\mathrm{k} x}=\frac{2}{\pi} \int_{0}^{\infty} \frac{\alpha \sin \alpha x}{\mathrm{k}^{2}+\alpha^{2}} \mathrm{~d} \alpha$.
2. (a) Using the method of variation of parameters, determine the appropriate Green's function for the boundary - value problem $y^{\prime \prime}+y+f(x)=0, y^{\prime}(0)=0, y(2)=0$ and express the solution as a definite integral.
(b) Find an approximate value of y (0.6) for initial value proplem $y^{1}=x-y^{2}, y(0)=1$ using multistep method $y_{i+1}=y_{i}+\frac{h}{2}\left(3 f_{i}-f_{i-1}\right)$ with step length $\mathrm{h}=0.2$. Compute the starting value using Taylor series second order method with same steplength.
(c) Define the triangular shape functions in a finite element method of solving a partial differential equation.
3. (a) Using Laplace transforms, solve the 5 p .d.e.
$\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}$ subject. to the conditions
$\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(5, \mathrm{t})=0 \mathrm{u}(x, 0)=\sin (\pi x)$.
(b) Expand $f(x)=x^{3}-3 x^{2}+2 x$ in a series of the 3 form $\sum_{n=0}^{\infty}$ an $\operatorname{Hn}(x)$, where $\operatorname{Hn}(x)$ is the Hermite polynomial of degree n in x.
(c) For single - step methods, what is the numerical error at the nodal point? When is the numerical single-step method said to be stable?
4. (a) Using the five-point formula and assuming
the uniform step length $h=\frac{1}{3}$ along the
axes, find the solution of $\nabla^{2} \mathrm{u}=x^{2}+y^{2}$ in R where, R is the triangle $0 \leq x \leq 1,0 \leq y \leq 1$, $0 \leq x+y \leq 1$. On the boundary of the triangle $\mathrm{u}(x, y)=x^{2}-y^{2}$.
(b) If L^{-1} denotes inverse Laplace transform,

$$
\text { find } L^{-1}\left[\ln \left(1+\frac{1}{\mathrm{~s}^{2}}\right)\right]
$$

5. (a) Determine the interval of absolute stability for the method.
$y_{\mathrm{i}+1}=y_{\mathrm{i}-1}+\frac{\mathrm{h}}{3}\left(7 y_{\mathrm{i}}^{\prime}-2 y_{\mathrm{i}-1}^{\prime}+y_{\mathrm{i}-2}^{\prime}\right)$
when applied to the test equation $y^{\prime}=\lambda y, \lambda<0$.
(b) Find the solution to the initial boundary value problem, subject to the given initial and boundary conditions,
$\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\frac{\partial^{2} \mathrm{u}}{\partial x^{2}}, \mathrm{u}(x, 0)=2 x$ for $x \in\left[0, \frac{1}{2}\right]$
and $\mathrm{u}(x, 0)=2(-x)$ for $x \in\left[\frac{1}{2}, 1\right]$,
$u(0, t)=0=u(1, t)$.
Using Schmidt method with $\lambda=\frac{1}{6}$ and $\mathrm{h}=0.2$.
6. (a) Bessel's function of the first kind of order $(-n)$ is

$$
\mathrm{J}_{-\mathrm{n}}(x)=\left(\frac{x}{2}\right)^{-\mathrm{n}} \sum_{\mathrm{m}=0}^{\infty} \frac{(-1)^{\mathrm{m}}}{\underline{\mathrm{~m}} \sqrt{(\mathrm{~m}-\mathrm{n}+1)}}\left(\frac{x}{2}\right)^{2 \mathrm{~m}}
$$

Using this definition show that $\mathrm{J}_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x$.
(b) Find the power series solution of the differential equation
$x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\left(x+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+(x-9) y=0$
about $x=0$.
7. (a) Solve the initial value problem 4 $y^{\prime}=-2 x y^{2}, y(0)=1$ with $h=0.2$ on the interval [0, 0.4] using predictor - correctors method.
$P: y_{i+1}=y_{i}+\frac{h}{2}\left(3 y_{i}^{\prime}-y_{i-1}^{\prime}\right)$
$C: y_{i+1}=y_{i}+\frac{h}{2}\left(y_{i+1}^{\prime}+y_{i}^{\prime}\right)$.
Perform two corrector iterations per step
and use $y(x)=\frac{1}{1+x^{2}}$ to obtain the starting value.
(b) Obtain the general solution of the 3 differential equation $(x+3)^{2} y^{\prime \prime}-4(x+3) y^{\prime}+6 y=\ln (x+3)$.
(c) Using convolution theorem, find the Fourier
inverse of the function $\frac{1}{(i \alpha+k)^{2}}, k>0$.

