M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination June, 2013

MMT-006: FUNCTIONAL ANALYSIS

Time : 2 hours Maximum Marks : 50

Weightage 70%

Note: Question number 1 is compulsory. Attempt any four from the remaining questions.

- State whether the following statements are true or false. Justify with a short proof or a counter example.
 - (a) The space l^3 is a Hilbert space.
 - (b) Any non zero bounded linear functional on a Banach space is an open map.
 - (c) Every bounded linear map on a complex Banach space has an eigen value.
 - (d) The image of a Cauchy sequence under a bounded linear map is also a Couchy sequence.
 - (e) If A is a bounded linear operator on a Hilbert space such that $AA^* = I$, then $A^*A = I$.
- 2. (a) Characterise all bounded linear functionals on a Hilbert space.

5

- (b) Prove that a normed linear space is complete if its unit sphere is complete.
- (c) Show that the map $T : \mathbb{R}^3 \to \mathbb{R}^2$ given by $T(x_1, x_2, x_3) = (x_1 + x_2, x_3)$ is an open map.
- 3. (a) Show how a real linear functional u on a complex linear normed space gives rise to a complex linear functional f. What is the relation between the boundedness of u and that of f?
 - (b) For normal linear spaces X, Y, prove that BL (X, Y) is complete if Y is complete.
 - (c) Prove that a finite dimensional normed 3 linear space is always reflexive.
- **4.** (a) In a Hilbert space. Prove that $x_n \to x$ **2** provided $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \to \langle x, x \rangle$.
 - (b) Are Hahn Banach extensions always unique? Justify.

5

- (c) State the principle of uniform boundedness.Use it to show that a set E in a normed space X is bounded if f(E) is bounded in K for every f ∈ X'.
- 5. (a) If H is a Hilbert space and SCH, show that $S^{\perp} = S^{\perp \perp \perp}$. When S is the same as $S^{\perp \perp}$? Justify.

(b) Show that Q defined on $(C [0, 1], \|.\|_{\infty})$ by

Q
$$(x) = \int_{0}^{1} t x(t) dt$$
 is a bounded linear

3

functional. Calculate $\parallel Q \parallel$.

- (c) Prove that l^{∞} is not separable. 2
- 6. (a) Show that the dual of l^1 is isometrically isomorphic to l^{∞} .
 - (b) Let A be an operator on a Hilbert space H. 4 Show that A is normal if and only if $||Ax|| = ||A^*x||$ for every $x \in H$.
- 7. (a) Let $\{u_n\}$ be the sequence in l^2 with 1 in the n^{th} place and zeroes else where prove that the set $\{u_n\}$ is an orthonormal basis for l^2 .
 - (b) If X is a normed linear space and $0 \neq x_0 \in X$, show that there is a linear functional $f \in X'$ such that $f(x_0) = ||x_0||$.
 - (c) Let E_1 be a closed subspace and E_2 a finite dimensional subspace of a normed linear space X. Show that $E_1 + E_2$ is closed in X.