M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
June, 2013

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 hours Maximum Marks : 50

Weightage 70\%
Note: Question number 1 is compulsory. Attempt any four from the remaining questions.

1. State whether the following statements are true or false. Justify with a short proof or a counter example. $5 \times 2=10$
(a) The space l^{3} is a Hilbert space.
(b) Any non zero bounded linear functional on a Banach space is an open map.
(c) Every bounded linear map on a complex Banach space has an eigen value.
(d) The image of a Cauchy sequence under a bounded linear map is also a Couchy sequence.
(e) If A is a bounded linear operator on a Hilbert space such that $\mathrm{AA}^{*}=\mathrm{I}$, then $A^{*} A=I$.
2. (a) Characterise all bounded linear functionals 5 on a Hilbert space.
(b) Prove that a normed linear space is complete if its unit sphere is complete.
(c) Show that the map $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ given by 2 $\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, x_{3}\right)$ is an open map.
3. (a) Show how a real linear functional u on a 4 complex linear normed space gives rise to a complex linear functional f. What is the relation between the boundedness of u and that of f ?
(b) For normal linear spaces X, Y, prove that 3 $\mathrm{BL}(\mathrm{X}, \mathrm{Y})$ is complete if Y is complete.
(c) Prove that a finite dimensional normed 3 linear space is always reflexive.
4. (a) In a Hilbert space. Prove that $x_{n} \rightarrow x$ 2 provided $\left\|x_{\mathrm{n}}\right\| \rightarrow\|x\|$ and $\left\langle x_{\mathrm{n}}, x\right\rangle \rightarrow\langle x, x\rangle$.
(b) Are Hahn - Banach extensions always 3 unique? Justify.
(c) State the principle of uniform boundedness. 5 Use it to show that a set E in a normed space X is bounded if $f(\mathrm{E})$ is bounded in K for every $f \in X^{\prime}$.
5. (a) If H is a Hilbert space and SCH , show that 5 $\mathrm{S}^{\perp}=\mathrm{S}^{1+1}$. When S is the same as S^{1+} ? Justify.
(b) Show that Q defined on $\left(C[0,1],\|\cdot\|_{\infty}\right)$ by 3
$Q(x)=\int_{0}^{1} \mathrm{t} x(\mathrm{t}) \mathrm{dt}$ is a bounded linear functional. Calculate $\|\mathrm{Q}\|$.
(c) Prove that l^{∞} is not separable.
6. (a) Show that the dual of l^{1} is isometrically 6 isomorphic to l^{∞}.
(b) Let A be an operator on a Hilbert space H. 4 Show that A is normal if and only if $\|\mathrm{A} x\|=\left\|\mathrm{A}^{*} x\right\|$ for every $x \in \mathrm{H}$.
7. (a) Let $\left\{u_{n}\right\}$ be the sequence in l^{2} with 1 in the 3
$n^{\text {th }}$ place and zeroes else where prove that
the set $\left\{u_{n}\right\}$ is an orthonormal basis for l^{2}.
(b) If X is a normed linear space and $0 \neq x_{0} \in X, \quad 3$ show that there is a linear functional $f \in X^{\prime}$ such that $\mathrm{f}\left(x_{0}\right)=\left\|x_{0}\right\|$.
(c) Let E_{1} be a closed subspace and E_{2} a finite 4 dimensional subspace of a normed linear space X. Show that $E_{1}+E_{2}$ is closed in X.
