\\ \title{
M.Sc. (MATHEMATICS WITH\\ \title{
M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) \\ Term-End Examination
}

June, 2013

MMT-005 : COMPLEX ANALYSIS

Time : $11 / 2$ hours
Maximum Marks : 25
Note: Question No. 1 is compulsory. Attempt any three questions from question number 2 to 5 . Use of calculator is not allowed.

1. State giving reasons whether the following statements are true or false : $\quad \mathbf{5 \times 2 = 1 0}$
(a) $\mathrm{e}^{\bar{z}}$ is nowhere analytic.
(b) $\quad \Sigma \frac{2^{n} z^{n}}{n!}$ has radius of convergence ∞.
(c) The harmonic conjugate of $\mathrm{u}(x, y)=x^{2}+y^{2}$ does not exist.
(d) $\int_{C} \frac{\sin z d z}{4 z+\pi}=\frac{-\sqrt{2} \pi i}{4}$ where C is a unit circle.
(e) $f(z)=\cos \left(\frac{1}{z-1}\right)^{2}$ has a pole of order two at $z=1$.
2. (a) Evaluate $\int_{C} \operatorname{Re} z d z$ where $C(t)=t+i t^{2}$, from $\quad 2$
$z=0$ to $z=1+\mathrm{i}$.
(b) Find the bilinear transformation which takes 3 the points $1,0, \infty$ to $-1, i,-i$. Also find the fixed points of the transformation, if any.
3. (a) Evaluate $\int_{C} \frac{3 z+1}{z(z-2)^{2}} \mathrm{~d} z$ 3
where C is shown in the figure below.

(b) Expand $f(z)=\frac{1}{z(z-1)}$ in a Laurent series
about $z=1$ valid for $|z-1|>\mid$.
4. (a) Let C denote the circle $|z|=2$, described in the counter-clockwise direction. Show that

$$
\left|\int_{\mathrm{C}} \frac{\log z}{z^{2}} \mathrm{~d} z\right| \leq \pi\left(\pi+\ln ^{2}\right)
$$

(b) Find the maximum modulus of $f(z)=2 z+5 \mathrm{i}$ on the closed circular region defined by $|z| \leq 2$.
5. Evaluate
$\int \frac{(x+1) \cos x}{x^{2}+4 x+5} \mathrm{~d} x$.

