No. of Printed Pages : 3

MMT-005

00432

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

June, 2013

MMT-005 : COMPLEX ANALYSIS

Time : $1\frac{1}{2}$ hours

Maximum Marks : 25

- *Note* : Question No. 1 is compulsory. Attempt any three questions from question number 2 to 5. Use of calculator is not allowed.
- State giving reasons whether the following statements are true or false : 5x2=10
 - (a) e^z is nowhere analytic.
 - (b) $\sum \frac{2^n z^n}{n!}$ has radius of convergence ∞ .
 - (c) The harmonic conjugate of $u(x, y) = x^2 + y^2$ does not exist.
 - (d) $\int_{C} \frac{\sin z \, dz}{4 \, z + \pi} = \frac{-\sqrt{2} \, \pi \, i}{4} \quad \text{where } C \text{ is a unit}$

circle.

MMT-005

1

P.T.O.

(e)
$$f(z) = \cos\left(\frac{1}{z-1}\right)^2$$
 has a pole of order two
at $z = 1$.

2. (a) Evaluate
$$\int_{C} \operatorname{Re} z \, dz$$
 where $C(t) = t + it^2$, from 2
 $z = 0$ to $z = 1 + i$.

(b) Find the bilinear transformation which takes **3** the points 1, 0, ∞ to -1, i, -i. Also find the fixed points of the transformation, if any.

3. (a) Evaluate
$$\int_{C} \frac{3z+1}{z(z-2)^2} dz$$
 3

where C is shown in the figure below.

(b) Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series 2

about z = 1 valid for |z - 1| > |.

MMT-005

4. (a) Let C denote the circle |z|=2, described in the counter-clockwise direction. Show that

$$\left| \int_{C} \frac{\log z}{z^2} \, \mathrm{d}z \right| \leq \pi \, (\pi + \ln^2).$$

,

- (b) Find the maximum modulus of f(z) = 2z + 5ion the closed circular region defined by $|z| \le 2$.
- 5. Evaluate

$$\int \frac{(x+1)\cos x}{x^2+4x+5} \,\mathrm{d}x.$$

5

2

3