MMT-004

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination June, 2013

MMT-004 : REAL ANALYSIS

Time : 2 hours

Maximum Marks : 50 Weightage : 70%

- *Note* : Question No. 1 is compulsory. Do any four questions out of questions no. 2 to 7.
- State, whether the following statements are *True* or *False*. Give reasons for your answers : 5x2=10
 - (a) The set $\mathbf{F} = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\}$ in **R** with usual

metric, has a limit point in F.

- (b) The characteristic function of the set of all rational numbers in [0, 1] is Lebesgue measurable.
- (c) Every Lebesgue integrable function is Riemann integrable.
- (d) An arbitrary intersection of open sets in a metric space is open.
- (e) In a metric space, every bounded sequence is a Canchy Sequence.

MMT-004

2. (a) Let X = C[0, 1], the set of all real valued 3 functions on [0, 1] which are continuous. For $f, g \in C[0, 1]$, define $d : X \times X \rightarrow \mathbf{R}$ by :

d (f,g) =
$$\int_{0}^{1} |f(t) - g(t)| dt$$
, where the

integral is Riemann integral. Show that d is a metric on X.

- (b) State Monotone Convergence Theorem. **3** Show that the sequence $\{f_n\}$, defined by $f_n = \chi_{[n, n+1]}$, $n \in N$, does not satisfies the conditions of the theorem. Also show that in this case the conclusion of Monotone convergence theorem does not hold.
- (c) Let E be an open subset of \mathbf{R}^4 , f map E into **4** \mathbf{R}^3 and $x \in \mathbf{E}$. Define differentiability of f at x. Compute $f'(\mathbf{a})$ at $\mathbf{a} = (1, 2, -1, -2)$, where $f: \mathbf{R}^4 \rightarrow \mathbf{R}^3$ is given by :

 $f(x, y, z, w) = (x^2yw, y^2z, z^2x).$

- (a) Show that every compact metric space is 5 complete. Is it totally bounded ? Justify your answer.
 - (b) Obtain the second order Taylor's series 5 expansion for the function :

$$f(x_1, x_2) = x^3, x_2 - 4x, e^{x_2}$$
 at (1, 0).

MMT-004

- 4. (a) Show that continuous image of a path 2 connected set in path connected.
 - (b) Which of the following sets are connected ? 3 Justify your answer.
 - (i) $A = \{(x, y) \in \mathbb{R}^2 : x \ge 1 \text{ and } y = 1\}$
 - (ii) $B = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = 3 \}$

(iii)
$$C = (0, 1) \cup (2, 3) \subseteq \mathbf{R}$$

- (c) Let A be a countable set. Show that : 3+2=5
 - (i) $m^*(A) = 0.$
 - (ii) A is measurable.
- 5. (a) If a set E has finite measure. Then show 3 that $L^2(E) \subset L^1(E)$.
 - (b) Let (X, d) be a metric space $a \in X$ be a fixed 3 point of X. Show that the function $f_a: X \rightarrow \mathbf{R}$ given by :

 $f_a(x) = d(a, x)$ is uniformly continuous on X.

(c) Let X be a connected metric space. Then, 4 prove that, any continuous function f from X to the discrete metric space {1, −1} is a constant function.

MMT-004

P.T.O.

6. (a) Find the critical points of the function 5 $f: \mathbf{R}^3 \rightarrow \mathbf{R}$, defined by : $f(x, y, z) = x^2y^2 + z^2 + 2x - 4y + z$. Also check whether they are extreme points. (b) Let $f \in L'(\mathbf{R})$ and $\alpha, \lambda \in \mathbf{R}$. Show that (i) if $g(x) = f(x)e^{i\alpha x}$ then : $\hat{g}(w) = \hat{f}(w - \alpha)$ (ii) if $g(x) = f\left(\frac{x}{\lambda}\right), \lambda > 0$ then $\hat{g}(w) = \lambda \hat{f}(\lambda w)$

where \hat{f} and \hat{g} denote the Fourier transforms of *f* and *g* respectively.

7. (a) Compute the Fourier series of the function f 3 given by :

$$f(t) = \begin{cases} -2, & -\pi < t < 0 \\ 2, & 0 < t < \pi \end{cases}$$

(b) Show that the system $R : f \rightarrow g$ given by :

3

g(t) = (R f)(t) =
$$\int_{-\infty}^{t} f(c) dc$$
, $f \in L'(R)$

is a time invariant system.

- (c) Define the following in the context of signals 4and systems. Give one example for each :
 - (i) Invertible system
 - (ii) Causal system.

MMT-004