MMT-003

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination June, 2013

MMT-003 : (ALGEBRA)

Time : 2 hours

00892

Maximum Marks : 50 Weightage 70%

- Note: Question no. 1 is compulsory. Attempt any four questions from question no. 2 to question no. 6. Use of Calculator is not allowed.
- State which of the following statements are true 10 and which are false. Given reasons for your answer :
 - (a) The eigen values of a matrix $A \in SO_3$ are 1 and -1.
 - (b) There exists only one injective homomorphism between two free groups.
 - (c) There exists an irrational number α such that both α and α^2 satisfy a cubic polynomial with rational coefficients.
 - (d) If *G* is a non-abelian group, then it has no irreducible representations.
 - (e) Any cubic irreducible polynomial in $F_7[x]$ must divide $x^7 x$.

MMT-003

P.T.O.

1

- (a) Show that a group of order 132 is not 5 simple.
 - (b) For the dihedral group D_6 of order 12,

$$D_6 = \{x^i y^j | x^6 = y^2 = 1, \ y x y^{-1} = x^{-1} \}$$

find the character of the representation for the action of D_6 on $D_6/\langle x^2 \rangle$ where $\langle x^2 \rangle$ is the cyclic subgroup of D_6 generated by x^2 . How many times does the trivial representation occur in this ? 5

3. (a) Find the orders of all conjugacy classes in 4
S₄. How many of the conjugacy classes have order 6 and contain odd permutations ?

 (c) Let G be a finite group V be a finite 4 dimensional vector space over C.

> Let $\rho: G \to GL(V)$ be a group representation and W be a G - invariant subspace of V such that $V = W \oplus W'$ for some subspace W' of V. Will W' always be G-invariant ? Justify your answer.

MMT-003

- 4. (a) Determine the number of non-isomorphic 3 abelian groups of order 300.
 - (b) Consider the permutation 4 $\sigma = (1357)(2468) \in S_8$. Express σ as a product of three cycles.
 - (c) Check whether $i \in Q(\sqrt{-2})$ or not. 3
- 5. (a) Solve the following simultaneous system of 4 congruences :

$$x \equiv 2 \pmod{4}$$
$$x \equiv 1 \pmod{5}$$
$$x \equiv 8 \pmod{11}$$

- (b) Construct an element of order four in the 2 multiplicative group of the finite field of 17 elements.
- (c) Show that there is a unique irreducible **4** polynomial of degree 2 over **F**₂. Further, if α is a root of this polynomial, then show that σ is a field automorphism of **F** (α), where $\sigma(\alpha) = \alpha + 1$.
- **6.** (a) If *F* is a field and α is transcendental over *F*, **5** prove that *F*(*x*) is isomorphic to *F*(α) as fields.
 - (b) Decompose M_2 (C) into orbits under the 5 action of GL_2 (C). by conjugation.

MMT-003

3