M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)
Term-End Examination June, 2013

MMT-003 : (ALGEBRA)

Time : 2 hours
Maximum Marks : 50
Weightage 70\%
Note: Question no. 1 is compulsory. Attempt any four questions from question no. 2 to question no. 6. Use of Calculator is not allowed.

1. State which of the following statements are true 10 and which are false. Given reasons for your answer :
(a) The eigen values of a matrix $\mathrm{A} \in \mathrm{SO}_{3}$ are 1 and -1 .
(b) There exists only one injective homomorphism between two free groups.
(c) There exists an irrational number α such that both α and α^{2} satisfy a cubic polynomial with rational coefficients.
(d) If G is a non-abelian group, then it has no irreducible representations.
(e) Any cubic irreducible polynomial in $\mathrm{F}_{7}[x]$ must divide $x^{7}-x$.
2. (a) Show that a group of order 132 is not simple.
(b) For the dihedral group D_{6} of order 12,
$D_{6}=\left\{x^{\mathrm{i}} y^{\mathrm{j}} \mid x^{6}=y^{2}=1, y x y^{-1}=x^{-1}\right\}$
find the character of the representation for the action of D_{6} on $D_{6} /\left\langle x^{2}\right\rangle$ where $\left\langle x^{2}\right\rangle$ is the cyclic subgroup of D_{6} generated by x^{2}. How many times does the trivial representation occur in this?
3. (a) Find the orders of all conjugacy classes in S_{4}. How many of the conjugacy classes have order 6 and contain odd permutations ?
(b) Find a grammar that generates
$\{b, a b a, a a b a a$, aaabaaa...... $\}$.
(c) Let G be a finite group V be a finite 4 dimensional vector space over \mathbf{C}.

Let $\rho: G \rightarrow G L(V)$ be a group representation and W be a G - invariant subspace of V such that $V=W \oplus W^{\prime}$ for some subspace W^{\prime} of V. Will W^{\prime} always be G-invariant ? Justify your answer.
4. (a) Determine the number of non-isomorphic 3 abelian groups of order 300 .
(b) Consider the permutation 4 $\sigma=(1357)(2468) \in S_{8}$. Express σ as a product of three cycles.
(c) Check whether $i \in \mathbf{Q}(\sqrt{-2})$ or not.
5. (a) Solve the following simultaneous system of 4 congruences :

$$
\begin{aligned}
x & \equiv 2(\bmod 4) \\
x & \equiv 1(\bmod 5) \\
x & \equiv 8(\bmod 11)
\end{aligned}
$$

(b) Construct an element of order four in the multiplicative group of the finite field of 17 elements.
(c) Show that there is a unique irreducible 4 polynomial of degree 2 over \mathbf{F}_{2}. Further, if α is a root of this polynomial, then show that σ is a field automorphism of $\mathbf{F}(\alpha)$, where $\sigma(\alpha)=\alpha+1$.
6. (a) If F is a field and α is transcendental over F, prove that $F(x)$ is isomorphic to $F(\alpha)$ as fields.
(b) Decompose M_{2} (C) into orbits under the action of $G L_{2}(C)$. by conjugation.

