M.Sc. (MATHEMATICS WITH
APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)
Term-End Examination
June, 2013
MMT-002 : LINEAR ALGEBRA

Time : $11 / 2$ hours
Maximum Marks : 25
(Weightage 70\%)
Instruction: Question No. 1 is compulsory. Do any three questions from the rest. Use of Calculators not allowed.

1. Which of the following statements are true and 10 which are false ? Justify your answer.
(a) If the algebraic and geometric multiplicities of every eigen value of a square matrix A are equal, then the characteristic polynomial of A cannot have multiple roots.
(b) If A is a matrix which has a Moore - Penrose inverse, then A must be invertible.
(c) The sum of the eigen values of a matrix A is at most equal to the sum of the entries of A.
(d) A Hermitian matrix need not be a unitary matrix.
(e) The matrix $\mathrm{A}^{*} \mathrm{~A}$ is always positive definite, for any 2×3 matrix A.
2. (a) Let $T: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{\mathbf{3}}$ be a linear transformation $\mathbf{3}$ defined by:

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x+2 y+z \\
x+y+z \\
x+z
\end{array}\right]
$$

Find the matrix of T with respect to the basis

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

(b) Check whether the matrix

$$
\left[\begin{array}{ccc}
3 & 1 & 1 \\
1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

is positive definite or not.
3. (a) Why is the matrix $\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ similar to a 2
diagonal matrix ?
(b) Find the quadratic polynomial which best fits the points $(-1,10.7),(2,14),(3,27.9)$ and (4, 48.2).
4. (a) Find the square root of $\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]$.
(b) Write the Jordan canonical form for a matrix 3 A whose minimal polynomial is $(x-1)^{2}$ and the ranks of the matrices $A-\mathrm{I}$ and $A-2 I$ are 2 and 4 , respectively.
5. Solve the system of differential equations 5

$$
\begin{aligned}
& \frac{d y(t)}{d t}=A y(t) \quad \text { with } \quad y(t)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \text { where } \\
& A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-8 & 3 & 3 \\
-6 & 0 & 5
\end{array}\right]
\end{aligned}
$$

