ට ගා

BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination

June, 2013

PHYSICS

PHE-06: THERMODYNAMICS AND STATISTICAL MECHANICS

Time: 2 hours Maximum Marks: 50

Note: All questions are compulsory. Use of log tables and non-programmable calculator is allowed. Symbols have their usual meanings. Marks are indicated against each question.

1. Attempt any five parts:

2x5=10

- (a) Calculate the thermo-e.m.f. across the two junctions of a thermocouple with $C_1 = 40 \mu \text{V}^{\circ}\text{C}^{-1}$ and $C_2 = -0.01 \mu \text{V}^{\circ}\text{C}^{-2}$, when its hot junction is at 500°C with respect to the cold junction.
- (b) Show that increase in pressure decreases the melting point of water.
- (c) Write Hess's law.
- (d) Discuss the physical basis for finite energy of fermions at absolute zero temperature.
- (e) Considering a Carnot engine. Show that the absolute zero is unattainable.
- (f) Briefly explain the principle of equipartition of energy.

- (g) Write down the Saha and Bose's equation of state. What value of critical coefficients is predicted by it?
- (h) What is B-E condensation?
- 2. (a) Name three thermometric properties which have linear dependence on temperature.
 - (b) What is thermocouple? How is it used to measure temperature? Discuss its merits and limitations.
- 3. (a) What is entropy? Obtain the first law of thermodynamics in terms of entropy.
 - (b) Show that entropy of mixing when two different ideal gases are made to diffuse is given by:

2+3

3

$$\Delta S_{\text{mix}} = - R [x_1 \ln x_1 + x_2 \ln x_2]$$

Where x_1 and x_2 denote mole fractions of two gases.

OR

- (a) Show that out of all heat engines working between same temperatures the reversible Carnot engine has the maximum efficiency.
- (b) A Carnot engine is made to work between 0°C and −200°C. Calculate its efficiency.

4. What is transport phenomenon in gases? Obtain expression for coefficient of viscosity of a gas if the average number of molecules crossing an area

is given by $\Delta n = \frac{1}{4}n\ \overline{v}$. Discuss its temperature dependence. 3+5+2

OR

What is Brownian motion? Discuss its significance. Obtain expression for mean square displacement using Einstein's theory. 2+2+6

5. (a) The F-D distribution function is given by: 2

$$f(\epsilon) = \frac{1}{e^{\beta(\epsilon - \mu)} + 1}$$

Plot it for T = OK and $T = T_1K$.

(b) Calculate ground state energy for a 8 completely degenerate FD gas.

OR

- (a) Derive Boltzmann-entropy equation: $7 S = k_B \ln W$.
- (b) Consider sun as a black-body whose interior consists of photon gas at $I=3\times 10^6 K$. Calculate the energy density of the solar radiation.

Take $\sigma = 7.56 \times 10^{-16} \text{ Jm}^{-3} \text{ K}^{-4}$.

विज्ञान स्नातक (बी.एससी.)

सत्रांत परीक्षा

जून, 2013

भौतिक विज्ञान

पी.एच.ई.-06 : ऊष्मागतिकी तथा सांख्यिकीय यांत्रिकी

समय : 2 घण्टे

अधिकतम अंक : 50

नोट: सभी प्रश्न अनिवार्य हैं। आप लॉग सारणी या अप्रोग्रामीय परिकलित्र का इस्तेमाल कर सकते हैं। प्रतीकों के अपने सामान्य अर्थ हैं। प्रत्येक प्रश्न के साथ अंक दिए गए हैं।

1. कोई पाँच भाग करें:

2x5=10

- (a) एक ताप-वैद्युत युग्म की दो संधियों पर ताप e.m.f. का मान परिकलित करे जबिक $C_1 = 40 \mu \text{V}^{\circ}\text{C}^{-1}$ और $C_2 = -0.01 \mu \text{V}^{\circ}\text{C}^{-2}$ तथा शीत एवं तप्त संधियों में 500°C तापमान का अन्तर है।
- (b) सिद्ध कीजिए कि दाब में वृद्धि होने पर पानी का गलनांक कम हो जाता है।
- (c) हैस का नियम लिखें।
- (d) परम शून्य तापमान पर फर्मीऑन की ऊर्जा शून्येत्तर होने के भौतिक आधार की चर्चा करें।
- (e) सिद्ध करें कि कार्नो इंजन द्वारा परम शून्य अनुपगम्य है।

- (f) ऊर्जा समविभाजन सिद्धांत की संक्षिप्त में व्याख्या करें।
- (g) साहा और बोस अवस्था समीकरण लिखें। इस समीकरण के अनुसार क्रांतिक गुणांक का मान क्या होता है?
- (h) बोस-आइन्स्टाइन संघनन क्या है?
- 2. (a) ऐसे तीन तापमापीय गुणधर्म बताइए जिनकी तापमान पर 3 रैखिक आश्रितता है।
 - (b) ताप-वैद्युत युग्म क्या है ? इसका तापमान मापने में किस तरह प्रयोग किया जाता है ? ताप-वैद्युत युग्म की विशेषताएँ और सीमाएँ लिखें। 2+3+2
- (a) एन्ट्रॉपी क्या है? एन्ट्रॉपी के पदों में ऊष्मागतिकी का 2+3
 प्रथम नियम लिखें।
 - (b) सिद्ध करें कि दो भिन्न-भिन्न आदर्श गैसों को विसरित $\mathbf{5}$ करने पर मिश्रण एन्ट्रॉपी का व्यंजक निम्नलिखित होगा : $\Delta S_{\rm mix} = \ R \ [x_1 \ \ln \ x_1 + x_2 \ \ln \ x_2]$ जहाँ x_1 और x_2 मोल अंशों को परिभाषित करते हैं।

अथवा

- (a) सिद्ध करें कि समान तापमानों के बीच कार्य कर रहे 7 सभी ऊष्मा इंजनों में उत्क्रमणीय कार्नो इंजन की दक्षता अधिकतम होती है।
- (b) एक कार्नो इंजन को 0°C और -200°C के बीच 3 प्रचालित किया जाता है। इसकी दक्षता परिकलित करें।

4. गैसों में अभिगमन परिघटना क्या होती है ? यदि किसी क्षेत्रफल को पार कर रहे औसत अणुओं की संख्या $\Delta n = \frac{1}{4} n \ \overline{v}$ हो तो गैस के श्यानता गुणांक का व्यंजक व्युत्पन्न करें। इसकी तापमान पर निर्भरता की चर्चा करें।

अथवा

ब्राउनी गित क्या है ? इसकी सार्थकता की चर्चा करें। आइन्स्टाइन सिद्धांत का उपयोग कर विस्थापन वर्ग माध्य का व्यंजक व्युत्पन्न करें।

5. (a) फर्मी-डिरैक बंटन फलन का व्यंजक निम्नलिखित है : 2 $f\left(\epsilon\right) = \frac{1}{e^{\beta(\epsilon-\mu)}+1}$ इस फलन को T=OK और T= T_1 K पर आलेखित करें Γ

(b) पूर्ण अपभ्रष्टता फर्मी-डिरैक गैस के लिए मूल-अवस्था 8 ऊर्जा परिकलित करें।

अथवा

- (a) बोल्ट्समान एन्ट्रॉपी समीकरण $S = k_B \ln W$ व्युत्पन्न 7 करें।
- (b) सूर्य को कृष्णिका मान लें जिसके अंत: भाग में 3 $T=3\times10^6 K$. अचर तापमान पर फोटॉन गैस है। इन सूर्य विकिरणों की ऊर्जा घनत्व परिकलित करें। मान लें कि: $\sigma=7.56\times10^{-16}$ ${\rm Im}^{-3}$ ${\rm K}^{-4}$ है।