BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

June, 2013

ELECTIVE COURSE : MATHEMATICS

MTE-04 : ELEMENTARY ALGEBRA
Time : $1 / 2$ hours
Maximum Marks: 25
Weightage : 70\%

Instructions :

1. Students registered for both MTE-04 \& MTE-05 courses should answer both the question papers in two separate answer books entering their enrolment no, course code and course title clearly on both the answer books.
2. Students who have registered for MTE-04 or MTE-05 should answer the relevant question paper after entering their curolment number, course code and course title on the answer book.

Note: Answer any three questions from question Nos. 1 to 4. Question No. 5 is compulsory. Calculators are not allowed.

1. (a) If the sum of the roots of a cubic equation is $31 / 2$ 7 , the sum of their squares is 21 , the sum of their cubes is 73 , find the cubic equation and its all roots.
(b) Find all the rational values of a for which $1 / 2$

$$
\left|\begin{array}{ccc}
1 & -1 & a \\
a & 2 & 1 \\
3 & 0 & -1
\end{array}\right| \neq 0
$$

2. (a) Use the Cauchy-Schwarz inequality to prove that for $a, b, x, y \in \boldsymbol{R}$,

$$
\sqrt{(a-b)^{2}+(x-y)^{2}} \leq \sqrt{a^{2}+x^{2}}+\sqrt{b^{2}+y^{2}}
$$

(b) For $z_{1}=-3+2 \mathrm{i}$ and $z_{2}=4+3 \mathrm{i}$, write z_{1} / z_{2} in polar form. Further in which quadrant will it lie in an Argand diagram?
3. (a) Two tickets from Patna to City A and three tickets from Mumbai to City B cost Rs. 77/-. Also, if we buy 3 tickets from Patna to City A and 5 tickets from Mumbai to City B, we have to pay Rs. 124/-. How much will we have to pay if 5 of us want to go from City A to Patna and 3 of us want to go from Mumbai to City B ?
(b) Check whether or not $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$ for any 4 sets A, B, C, D.
4. (a) Give one example each, with justification, of the following :
(i) A non-singular matrix
(ii) An element of $(Q \times Z) \backslash(Z \times N)$
(iii) Two elements of Z for which $\mathrm{AM} \nexists \mathrm{GM}$.
(b) Obtain all the $7^{\text {th }}$ roots of $1-\mathrm{i}$.
5. Which of the following statements are true and which are false? Give reasons for your answers.
(a) $(\sin \theta+i \cos \theta)^{n}=\sin n \theta+i \cos n \theta$ for $n \in Z$.
(b) If $A \subseteq B \cup C$, then $A \subseteq B$ or $A \subseteq C$, for three sets A, B, C.
(c) If $f(x)=0$ is a polynomial equation of degree n over R, then it must have at least n distinct roots in R.
(d) A system of linear equations that cannot be solved by Cramer's rule must be inconsistent.
(e) $\quad|x-y| \geqslant|x|-|y| \forall x, y \in R$.

एम.टी.ड़.-04

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा
जून, 2013

ऐच्छिक पाठ्यक्रम : गणित
एम.टी.ई.-04 : प्रारंभिक बीजगणित

समय : $11 / 2$ घण्टे
अधिकतम अंक : 25 कुलका : 70%
निर्देश :

1. जो छात्र एम.टी.ईं. -4 और एम. टी. ईं. -5 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्नपत्रों के उत्तर अलग-अलग उत्तर पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।
2. ज़ो छात्र एम.टी. ईं. -4 या एम. टी. ईं. -5 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्नपत्र के उत्तर, उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठघक्रम नाम साफ-साफ लिखकर दें।

नोट : प्रश्न संख्या 1 से 4 में से कोई तीन प्रश्न कीजिए। प्रश्न 5 करना जरूरी है। कैल्कुलेटर के प्रयोग की अनुमति नहीं है।

1. (a) यदि त्रिधाती समीकरण के मूलों का योगफल 7 हो, और $3 \frac{1}{2}$ उनके वर्गों का योगफल 21 होता हो और उनकं घनों का योगफल 73 होता हो, तो इसका त्रिघाती समीकरण और उसके सभी मूल ज्ञात कीजिए।
(b) a के उन सभी मानों को ज्ञात कीजिए। जिनके लिए $1 / 2$

$$
\left|\begin{array}{ccc}
1 & -1 & a \\
a & 2 & 1 \\
3 & 0 & -1
\end{array}\right| \neq 0
$$

2. (a) कॉशी-श्वार्ज असमिका की सहायता से यह सिद्ध कीजिए कि $\mathrm{a}, \mathrm{b}, x, y \in \mathrm{R}$ के लिए

$$
\sqrt{(a-b)^{2}+(x-y)^{2}} \leq \sqrt{a^{2}+x^{2}}+\sqrt{b^{2}+y^{2}}
$$

(b) यदि $z_{1}=-3+2 \mathrm{i}$ और $z_{2}=4+3 \mathrm{i}$ हो, तो z_{1} / z_{2} को ध्रुवी रूप में लीखिए। यह भी बताइए कि आरगां आरेख के किस चतुर्थांश में यह स्थित होगा ?
3. (a) पटना से सिटी A के दो टिकटों और मुम्बई से सिटी B के तीन टिकटों के लिए रु. 77/-देने पड़ते हैं और हमें पटना से सिटी A के तीन टिकट और मुम्बई से सिटी B के 5 टिकट के लिए हमें रु. 124/-देने होते है। बताइए कि उस स्थिति में हमें कितने रु. देने होगें जबकि हममें से 5 सिटी A से पटना जाना चाहते हो और 3 मुम्बई से सिटी B जाना चाहते हों ?
(b) बताइए कि किन्हीं 4 समुच्चयों $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ के लिए 2 $(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{D})=(\mathrm{A} \cap \mathrm{C}) \times(\mathrm{B} \cap \mathrm{D})$ लागू होता है या नहीं
4. (a) निम्नलिखित में से प्रत्येक का पुष्टीकरण के साथ एक उदाहरण दीजिए :
(i) व्युत्क्रमणीय आव्यूह (non-singular matrix)
(ii) $(Q \times Z) \backslash(Z \times N)$ का एक अवयव
(iii) Z के दो अवयव जहाँ $\mathrm{AM} \nsupseteq \mathrm{GM}$
(b) $1-\mathrm{i}$ के सभी 7 वें मूल ज्ञात कीजिए।
5. नीचे दिए गए कथनों में कौन-कौन से कथन सत्य हैं और कौन- 10 कौन से असत्य अपने उत्तर की पुष्टि भी कीजिए।
(a) $(\sin \theta+i \cos \theta)^{n}=\sin n \theta+i \cos n \theta, n \in Z$ जहाँ
(b) यदि $A \subseteq B \cup C$, तो $A \subseteq B$ या $A \subseteq C$, जहाँ A, B, C तीन समुच्चय हैं।
(c) यदि $f(x)=0, R$ पर घात n वाला एक बहुपद समीकरण हो, तो R में इसके कम से कम n स्पष्ट मूल होंगे।
(d) वह रैखिक समीकरण निकाय जिसे क्रैमर नियम से हल नहीं किया जा सकता, वह असंगत होगा
(e) $|x-y| \geqslant|x|-|y| \forall x, y \in R$.

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
June, 2013

ELECTIVE COURSE : MATHEMATICS

MTE-05 : ANALYTICAL GEOMETRY

Time: $1 / 1 / 2$ hours
Maximum Marks : 25
Weightage: 70%
Note: Question no. 5 is compulsory. Do any three questions from questions numbers. 1 to 4. Calculators are not allowed.

1. (a) If normal at one extremity of latus rectum of an ellipse passes through one extremity of minor axis, prove that the eccentricity e is given by $\mathrm{e}^{4}+\mathrm{e}^{2}-1=0$.
(b) Find the equation of the sphere which has $(-1,1,0)$ and $(3,-1,2)$ as ends of a diameter.
2. (a) Find the eccentricity and equations of the 2 asymptotes of the hyperbola $4 x^{2}-9 y^{2}=9$.
(b) Find the equation of the cone with vertex at the origin and base curve as

$$
\frac{x^{2}}{3}+\frac{y^{2}}{5}=1, z=2
$$

3. (a) Find the equation of the plane through the

2 points $(-1,1,1)$ and $(1,-1,1)$ and perpendicular to the plane $x+2 y+2 z=5$.
(b) Find the standard equation of the conicoid $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y+2 x+12 y+$ $10 z+20=0$ by shifting the origin to the centre $\left(-\frac{1}{6}, \frac{5}{3},-\frac{13}{6}\right)$ and then for rotating the coordinates axes so that direction ratios of the new axes are $-1,0,1$; 1, 1, 1; 1, 2, 1 respectively.
4. (a) Find the equations of tangent planes to the conicoid $x^{2}+2 y^{2}+z^{2}=4$ which pass through the line $x+y+z+1=0$, $2 x+3 y+2 z-3=0$.
(b) Find the equation of normal to the parabola $y^{2}=4 a x$ at the point of contact of the tangent $x+m y+a m^{2}=0$.
5. Are the following statements true or false? Give 10 reasons in support of your answers.
(a) The equation
$x^{2}+y^{2}+z^{2}+4 x+6 y+8 z+30=0$
represents a real sphere.
(1) The equation $y^{2}+z^{2}=a^{2}$ represents a circle in 3-dimensional space.
(c) The conic $3 x^{2}+7 x y+2 y^{2}+5 x+5 y+2=0$ represents a hyperbola.
(d) If a curve in a plane is symmetric with respect to the origin, then it is symmetric with respect to the x-axis.
(e) The section of the conicoid $x^{2}+2 y^{2}+z^{2}=9$ with the plane $y=2$ is a circle

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा
जून, 2013

ऐच्छिक पाठ्यक्रम : गणित

एम.टी.ई.-05 : वैश्लेषिक ज्यामिति

समय : $11 / 2$ घण्टे
अधिकतम अंक : 25
कुलका : 70%
नोट : प्रश्न संख्या 5 अनिवार्य है। प्रश्न संख्या 1 से 4 में से कोई तीन प्रश्न कीजिए। कैल्कुलेटरों का प्रयोग करने की अनुमति नहीं है।

1. (a) यदि एक दोर्घवृत्त के नाभिलंब को एक सिरे पर अभिलंब 3 लघु अक्ष के एक सिरे से होकर जाता है, तब सिद्ध कीजिए कि उत्केंद्रता e, निम्नलिखित द्वारा दी गई है $e^{4}+e^{2}-1=0$
(b) उस गोले का समीकरण ज्ञात कीजिए जिसके व्यास के सिरे $(-1,1,0)$ और $(3,-1,2)$ है।
2. (a) परवलय $4 x^{2}-9 y^{2}=9$ के उत्केंद्रता और अनंतस्पर्शियों 2 की समीकरण ज्ञात कीजिए।
(b) मूलबिन्दु पर शीर्ष और आधार वक्र 3
$\frac{x^{2}}{3}+\frac{y^{2}}{5}=1, z=2$ वाले शंकु का समीकरण ज्ञात
कीजिए।
3. (a) बिन्दुओं $(-1,1,1)$ और $(1,-1,1)$ से जाने वाले और समतल $x+2 y+2 z=5$ पर लंब समतल का समीकरण ज्ञात कीजिए।
(b) मूलबिंदु को $\left(-\frac{1}{6}, \frac{5}{3},-\frac{13}{6}\right)$ पर स्थानांतरित करके

और निर्देशांक अक्षों को इस तरह् घुमाके कि नए अक्षों के दिक् अनुपात $-1,0,1 ; 1,1,1 ; 1,2,1$ क्रमशः
हो, शांकवज
$3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y+2 x+12 y+$ $10 z+20=0$ का मानक समीकरण ज्ञात कीजिए।
4. (a) शांकवज $x^{2}+2 y^{2}+z^{2}=4$ के स्पर्श समतलों के 3 समीकरण ज्ञात कीजिए जो रेखा $x+y+z+1=0$, $2 x+3 y+2 z-3=0$ से गुजरने वाले हो।
(b) स्पर्श रेखा $x+m y+\mathrm{am}^{2}=0$ के संपर्क बिन्दु पर 2 परवलय $y^{2}=4 \mathrm{ax}$ के अभिलंब का समीकरण ज्ञात कीजिए।
5. बताइए निम्नलिखित कथन सत्य हैं या असत्य। अपने उत्तरों के पक्ष में कारण बताइए
(a) समीकरण

$$
x^{2}+y^{2}+z^{2}+4 x+6 y+8 z+30=0 \quad \text { एक }
$$

वास्तविक गोले को निरूपित करता है।
 निरुपित करता है।
(c) शांकव $3 x^{2}+7 x y+2 y^{2}+5 x+5 y+2=0$ अतिपरवलय को निरूपित करता है।
(d) यदि समतल में एक वक्र मूल बिन्दु के सापेक्ष सर्ममित है, तो वह x-अक्ष के सापेक्ष भी सममित होता है।
(e) समतल $y=2$ वाले शांकवज $x^{2}+2 y^{2}+z^{2}=9$ का परिच्छेद एक वृत्त होता है।

