BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination June, 2013

ELECTIVE COURSE : MATHEMATICS MTE-14 : MATHEMATICAL MODELLING

Time : 2 hours
Maximim Marks : 50 Weightage 70%
Note: Answer question no. 1 Compulsory and any four from the rest. All questions carry equal marks. Use of calculators is allowed.

1. (a) A particle moves under a central repulsive 6 force $m \mu \div$ (distance) 3 and is projected from an apse at a distance ' a ' with a velocity $~ U$. Show that the equation to the path is $r \operatorname{cosp} \theta=a$ and the angle described in time t is
$\frac{1}{p} \tan ^{-1}\left(\frac{p v}{a} \mathbf{t}\right)$ where $\mathrm{p}^{2}=\frac{\mathrm{a}^{2} v^{2}+\mu}{a^{2} v^{2}}$
(b) A drug is induced in a patient's bloodstream
at a constant rate $\mathrm{rgms} / \mathrm{sec}$. Simultaneously
the drug is removed at a rate proportional
to the amount $x(t)$ of the drug present at
any time t. Determine the differential
equation governing the amount $x(t)$. If the
initial concentration of the drug in the
bloodstream is x_{0} find the concentration of
the drug at any time t.
2. (a) Consider the diffusion of oxygen through a membrane $0 \leq x \leq h$ of thickness h, the two ends of which are maintained at concentration C_{1} and C_{2} respectively. If the initial concentration is zero, model this problem using one-dimensional diffusion equation and find the rate at which the diffusing oxygen emerges at the interface $x=0$, for unit area per unit time.
(b) A TV repairman finds that the time spent on his jobs has an exponential distribution with mean 30 minutes. If he repairs sets in the order in which they come in, and if the arrival of sets is approximately Poisson with an average rate of 10 per 8 -hour day, what is the repairman's expected idle time each day? How many jobs are ahead of the average set just brought in ?
3. (a) If a simple pendulum of length l oscillates through an angle α on either side of the mean position then find the angular velocity $\frac{d \theta}{d t}$ of the pendulum where θ is the angle which the string makes with the vertical.
(b) Find the value and the optimum strategies for two players A and B of the rectangular game whose pay off matrix is given below :

B

A | 1 | -1 | -1 |
| :---: | :---: | :---: |
| -1 | -1 | 3 |
| -1 | 2 | -1 |

4. (a) Let the returns on the securities of two companies X and Y be as given below:

Event (j$)$	Chance	Return	
	$p_{1} \mathrm{j}=\mathrm{p}_{2} \mathrm{j}$	$\mathrm{R}_{\mathrm{i} j}$	$\mathrm{R}_{2 \mathrm{j}}$
1	$1 / 4$	6	7
2	$1 / 2$	13	8
3	$1 / 4$	18	11

Find the expected return of the portfolios $\mathrm{P}=(0.7,0.3)$ and $\mathrm{Q}=(0.4,0.6)$. What inference can you draw by comparing the returns of the portfolios P and Q ?
(b) Consider a rabbit population $x(\mathrm{t})$ at any time $t(>0)$. If $a x$ is the rate at which birth occurs and $b x^{2}$ is the rate at which death occurs (a, b are constants), then formulate the model of the rabbit population. If the initial population is 120 rabbits and there are 8 births per month and 6 deaths per month occuring at $t=0$, how many months does it take for $x(\mathbf{t})$ to reach 95% of the limiting population $\left(\frac{b}{a}\right)$?
5. (a) Suppose that the population $x(t)$ and $y(t)$ satisfy the model given by the following system of equations :

$$
\begin{aligned}
& \frac{d x}{d \mathrm{t}}=14 x-2 x^{2}-x y \\
& \frac{d y}{d \mathbf{t}}=16 y-2 y^{2}-x y
\end{aligned}
$$

Determine all the critical points of the syrem and discuss the type and stability of these critical points. Which critical point reprecents the possibility of co-existence of the two populations?
(b) Find out the escape velocity and the acceleration due to gravity on the moon where, mass of moon is $7.35 \times 10^{22} \mathrm{~kg}$, radius of moon is $1.738 \times 10^{6} \mathrm{~m}$, and universal gravitational constant $\mathrm{G}=6.67 \times 10^{-1!} \mathrm{m}^{3} \mathrm{~kg}^{-1}$
6. (a) Sulphur dioxide is emitted at a rate of $260 \mathrm{~g} / \mathrm{s}$ from a stack with an effective height of 80 m . The wind velocity at a stack is $0 \mathrm{~m} / \mathrm{s}$ and the atmospheric stability chass is) for the overcast day. Detemine the round level comentration along the centre me at a distance 900 m from a stack, in micrograms per cubic metre. Hint: $\left(\sigma_{v}=69 \mathrm{~m}\right.$ and $\mathrm{t}=29.5 \mathrm{~m}$ are the standard deviations in the vertical direction and cross wind direction respectively).
(b) Using dmensional analysis, find the xpressions for the following nondimensional numbers:
(i) Reynolds number (depends on p, U, L, μ)
(ii) Peclet number (depends on U, L, D) (ii) Schmid number (depends on $\mu, p, 0$). Where ρ is density, U is velocity, μ is mgosity, D is diffusion coefficient and L is bght.
7. (a) Give one example each from the real-world of the following, with justification for your example:
(i) A stochastic model
(ii) A non-linear model
(iii) A queuing model
(b) Assuming that the wind velocity u is in only one direction, the equation describing the dispersion of pollutants of concentration $C(x, t)$ is given by the equation :

$$
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}+\mathrm{u} \frac{\partial \mathrm{C}}{\partial x}=\mathrm{D} \frac{\frac{2}{\partial \mathrm{C}}}{\partial x^{2}}, 0<x<\mathrm{h}, \mathrm{t}>0
$$

Where D is the diffusion coefficient of the pollutants and $0<x<h$ is the region of interest. The initial and boundary conditions are given by :
$C(x, 0)=0, C(0, t)=C_{1}$
$C(h, t)=C_{2}$
Where C_{1} and C_{2} are constants. Find the concentration distribution $C(x, t)$.
[Hint :You may use the transformation $\mathrm{X}=\mathrm{x}-\mathrm{ut}$]

एम.टी.ई-14

स्नातक उपाधि कार्यक्रम (बी.डी.पी)
 सत्रांत परीक्षा

जून, 2013

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-14 : गणितीय निदर्शन

समय : 2 घण्टे

अधिकतम अंक : 50
कुल का : 70%

नोट : किन्हीं पाँच प्रश्नों के उत्तर दीजिए जिसमें प्र.सं. 1 अनिवार्य है। सभी प्रश्नों के अंक समान हैं। कैल्कुलेटर के प्रयोग की अनुमति नहीं है।

1. (a) एक कण केन्द्रीय प्रतिक्षेपक बल $m \mu \div(\text { दूरी })^{3}$ के 6 अधीन गतिमान है और उसे एक अर्द्धवृत्तकक्ष से दूरी ' a ' और वेग v के साथ प्रक्षिप्त किया जाता है। दिखाइए कि पथ का समीकरण $r \operatorname{cosp} \theta=a$ है और समय t में बनने वाला कोण
$\frac{1}{\mathrm{p}} \tan ^{-1}\left(\frac{\mathrm{p} v}{\mathrm{a}} \mathrm{t}\right)$ है जहाँ $\mathrm{p}^{2}=\frac{\mathrm{a}^{2} v^{2}+\mu}{\mathrm{a}^{2} v^{2}}$
(b) कोई दवाई एक रोगी की रक्त धारा में r ग्राम/सेकण्ड 4 की अचर दर से प्रेरित की जा रही है। इसके साथ ही, यह दवाई किसी भी समय t पर उपस्थित दवाई की मात्रा $x(\mathrm{t})$ के समानुपाती दर से निकाली जा रही है। मात्रा $x(\mathrm{t})$ नियंत्रित करने वाला अवकल समीकरण निर्धारित किजिए। यदि रक्त धारा में दवाई की प्रारंभिक सांद्रता x_{0} है, तो दवाई की किसी भी समय t पर सांद्रता ज्ञात कीजिए।
2. (a) मोटाई h वाली एक झिल्ली $0 \leq x \leq h$ से होकर जाते हुए ऑक्सीजन के एक विसरण पर विचार कीजिए, जिसमें दोनों सिरों को क्रमशः सांद्रता C_{1} और C_{2} पर अनुरक्षित रखा जाता है। यदि प्रारंभिक सांद्रता शून्य है, तो एक-विमीय विसरण समीकरण का उपयोग करते हुए, इस समस्या का निदर्शन कीजिए तथा एकक क्षेत्रफल के लिए, अंतरापृष्ठ $x=0$ पर प्रति इकाई समय विसरित, ऑक्सीजन के निर्गत होने की दर ज्ञात कीजिए।
(b) टेलीविजन की मरम्मत करने वाले व्यक्ति को पता है कि उसके कार्यों पर लगने वाला समय 30 मिनट माध्य वाला चरघांताकी बंटन है। यदि वह सैटों की मरम्मत उनके आने के क्रमानुसार करता है और दिन में 8 घंटे की कार्य अवधि के दौरान आने वाले सैटों की औसत दर 10 है, जो लगभग प्वासाँ-बंटित है। प्रतिदिन उसके खाली बैठने का प्रत्याशित समय क्या होगा ? आने वाले सैट से पहले प्रत्याशा कितने सैटों की मरम्मत शेष होगी ?
3. (a) यदि लम्बाई l का एक सरल लोलक माध्य स्थिति के दोनों ओर कोण α पर दोलायमान करता है, तो लोलक का कोणीय वेग $\frac{d \theta}{d t}$ ज्ञात कीजिए, जहाँ θ वह कोण है जो डोरी ऊर्ध्वाधर के साथ बनाती है।
(b) दो खिलाड़ियों A और B के खेल का मान और उनकी अनुकूलतम युक्तियाँ ज्ञात कीजिए। भुगतान सारणी नीचे दी गयी है :

B

A | 1 | -1 | -1 |
| :---: | :---: | :---: |
| -1 | -1 | 3 |
| -1 | 2 | -1 |

4. (a) दो कंपनियों X और Y की प्रतिभूतियों के प्रतिफल नीचे 5 दिए गए हैं :

घटना (i)	प्रायिकता	प्रतिफल	
	$p_{1} j=p_{2} i$	$R_{1} j$	$R_{2 j}$
1	$1 / 4$	6	7
2	$1 / 2$	13	8
3	$1 / 4$	18	11

निवेश सिचि $\mathrm{P}=(0.7,0.3)$ और $\mathrm{Q}=(0.4,0.0)$ क प्रत्याशित प्रतिफल ज्ञात कीजिए \mid निवेश सूचा P और Q के प्रतिफलों की नुलना करने पर्ज आप क्या अनुमिति निकाल सक्ते हैं?
(b) किसी भी समय $t(>0)$ पर खरगोश जनसंख्या :(i) लीजिए। यदि ax जन्म दर हो और $\mathrm{b} \mathrm{x}^{2}$ मान्यु दर हो, जहाँ a और b अचर है, तो खरगोग जनमंख्या का निद्गन कीजिए: यदि आरंभिक जनमंख्या 120 ग्बरोगाए है औंर समय $t=0$ पर प्रतिमाह 8 जन्म और 6 मृत्यु होती हों तो $x(\mathrm{t})$ को सीमांत, जनसंख्या $\left(\frac{\mathrm{b}}{\mathrm{a}}\right)$ के 95% तक पहुँचने में कितने माह लगेंगे ?
5. (a) मान लीजिए जनसंग्र्या $x(t)$ और $y(t)$ निम्नलिखित 7 समीकरण निकाय द्वारा प्रान्न निदर्श को संतुप्ट करती हैं:
$\frac{d x}{d t}=14 x-2 x^{2}-x y$
$\frac{d y}{d t}=16 y-2 y^{2}-x y$

निकाय के सभी क्रांतिक बिंदु ज्ञात कीजिए और उनके प्रकार और स्थायित्व पर चर्चा कीजिए। कौनसा क्रांतिक बिंदु दोनों जनसंख्याओं के सह-अस्तित्व की संभावना को निरूपित करता है ?
(b) चंद्रमा पर पलायन वेग और गुरुत्व त्वरण ज्ञात कीजिए जहाँ, चंद्रमा का द्रव्यमान $=7.35 \times 10^{22} \mathrm{~kg}$, चंद्रमा की त्रिज्या $=1.738 \times 10^{6} \mathrm{~m}$, और सार्वत्रिक गुरुत्वीय स्थिरांक $\mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$ है।
6. (a) 80 m की एक प्रभावी ऊँचाई वाले एक स्टैक से $260 \mathrm{~g} / \mathrm{s}$ की दर से सल्फर डाई-ऑक्साइड उत्सर्जित हो रही है। स्टैक पर पवन वेग $6 \mathrm{~m} / \mathrm{s}$ है और बदली छाए हुए दिन में वायुमंडलीय स्थायित्व वर्ग D है। माइक्रोग्राम प्रति घन मीटर में स्टैक से 900 m की दूरी पर केन्द्र रेखा के अनुदिश भूमि तल सांद्रण ज्ञात कीजिए। संके त : $\sigma_{y}=69 \mathrm{~m}$ और $\sigma_{z}=29.5 \mathrm{~m}$ क्रमशः ऊध्र्वाधर दिशा और अनुप्रस्थ पवन दिशा में मानक विचलन है)।
(b) विभिय विश्लेषण प्रयोग करके निम्नलिखित अविमीय संख्याओं के व्यजंक ज्ञात कीजिए :
(i) रेनॉल्ड संख्या (जो $\rho, \mathrm{U}, \mathrm{L}, \mu$ पर निर्भर करती है)
(ii) ऐेक्लेट संख्या (जो $\mathrm{U}, \mathrm{L}, \mathrm{D}$ पर निर्भर करती है)
(iii) श्मिट संख्या (जो μ, ρ, D पर निर्भर करती है) जहाँ ρ घनत्व है, U वेग है, μ श्यानता है, D विसरण गुणांक है और L लंबाई है।
7. (a) निग्नलिखित के लिए वास्तविक जीवन से संबंधित 3 एक-एक उदाहरण, तर्क सहित दीजिए :
(i) प्रसंभाव्य निदर्श
(ii) अरैखिक निदर्श
(iii) पंक्ति निदर्श
(b) यह मानकर कि पवन का वेग u केवल एक दिशा में है, 7 सांद्रण $\mathrm{C}(x, \mathrm{t})$ के प्रदूषकों के परिक्षेपण को निर्धारित करने वाला समीकरण निम्नलिखित है :
$\frac{\partial \mathrm{C}}{\partial \mathrm{t}}+\mathrm{u} \frac{\partial \mathrm{C}}{\partial x}=\mathrm{D} \frac{\frac{\partial}{\partial \mathrm{C}}}{\partial x^{2}}, 0<x<\mathrm{h}, \mathrm{t}>0$
जहाँ D प्रदूषकों का विसरण गुणांक है और $0<x<\mathrm{h}$ वह क्षेत्र है जिसमें हमें रुचि है। आदि और परिसीमा प्रतिबंध निम्नलिखित दिए गए है :
$\mathrm{C}(x, 0)=0, \mathrm{C}(0, \mathrm{t})=\mathrm{C}_{1}$
$C(h, t)=C_{2}$
जहाँ C_{1} और C_{2} अचर हैं। सांद्रण बंटन $\mathrm{C}(x, \mathrm{t})$ ज्ञात कीजिए।
[संकेत : यहाँ आप रूपांतरण $\mathrm{X}=\mathrm{x}-\mathrm{ut}$ का प्रयोग कर सकते हैं।]

