BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
June, 2013

ELECTIVE COURSE : MATHEMATICS MTE-13 : DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50
Weightage : 70\%
Note: Question No. 1 is compulsory. Do any four questions from question numbers 2 to 7. Calculators are not allowed.

1. Which of the following statements are false and
which are true? Justify your answers with a short proof or a counter - example.
(a) The following graph is non - Hamiltonian

(b) If a coin is tossed 4 times, the probability of getting more heads than tails is $\frac{5}{16}$.
(c) There is at least one graph with five vertices of degrees $2,2,2,2,3$.
(d) If $x, y, n \in N$, the proposition $(\exists x)(\exists y)\left(x^{2}+y^{2}=\mathrm{n}\right)$ is true.
(e) The generating function of the recurrence relation, $a_{n}-5 a_{n-1}+6 a_{n-2}=2^{n}$ is $\frac{\mathrm{e}^{2 x}}{(x-2)(x-3)}$.
2. (a) Find the Boolean expression, in the DNF, for the function $f: B^{3} \rightarrow B$ given by the following table.

$\left(x_{1}, x_{2}, x_{3}\right)$	$f\left(x_{1}, x_{2}, x_{3}\right)$
$(1,1,1)$	1
$(1,1,0)$	0
$(1,0,0)$	1
$(1,0,1)$	1
$(0,1,1)$	1
$(0,1,0)$	1
$(0,0,1)$	0
$(0,0,0)$	1

(b) In how many ways can 5 boys and 3 girls be seated around a table if boy B_{1} and girl G_{1} are not adjacent ?
(c) Prove that a bipartite graph cannot contain odd cycles.
3. (a) For $n \in N$, prove that

$$
C(n, 0)^{2}+C(n, 1)^{2}+\ldots+C(n, n)^{2}=C(2 n, n)
$$

(b) Suppose we want to find the smallest and largest numbers in a set of n distinct integers, where n is even, using the divide and conquer approach. Find a recurrence relation to count the number of comparisons required.
(c) If a k - regular graph has no cycles of length 3 less than 5 , show that it must have at least $k^{2}+1$ vertices.
4. (a) How many solutions are there to the equation $x+y+z+w=18$ in positive integers such that $x \leq 5, y \leq 7, z \leq 8, w \leq 10$?
(b) Two unbiased dice are thrown. Find the 2 probability that the number on the $1^{\text {st }}$ die is greater than that on the $2^{\text {nd }}$ die.
(c) Give an indirect proof of the following 3 statement :
"If $x . y$ is even, then one of x or y must be even".
5. (a) Calculate the Stirling number S_{4}^{2}. 3
(b) Find the generating function for the 4 recurrence relation.
$a_{k}=4 a_{k-1}-4 a_{k-2}+1$, given that $a_{0}=2$, $a_{1}=5$.
(c) Show that any tree with exactly two vertices 3 of degree 1 is a path.
6. (a) Using Mathematical induction, prove that the sum of the first n odd, positive integers is n^{2} for all $n \in N$.
(b) Illustrate Fleury's Algorithm with the help 4 of the following graph. Indicate the bridges you have chosen.

(c) Solve the recurrence relation
$a_{n}=3 a_{n-1}+4 a_{n-2}, a_{0}=a_{1}=1$.
7. (a) Consider the following graph:

(i) Find its edge chromatic number.
(ii) Find its vertex chromatic number.
(b) A, B and C are standing in a line. The first person says that C is in the middle, the second says that she is B and the third says that A is in the middle. If you know that A is telling the truth and C is telling a lie, use deductive reasoning to find out their placement in the line.
(c) If $d_{n, k}$ denotes the number of permutations of n numbers with k matches (i.e. exactly k of the numbers appear in their natural position $)$, show that $d_{n, k}=C(n, k) d_{n-k}$

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा
जून, 2013

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-13 : विविक्त गणित

समय : 2 घण्टे अधिकतम अंक : 50

कुल का: 70%
नोट : प्रश्न सं. 1 अनिवार्य है। प्रश्न सं 2 से 7 में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैलकुलेटरों का प्रयोग करने की अनुमति नहीं है।

1. बताइए निम्नलिखित में से कौन कथन सत्य हैं और कौन से 10 असत्य हैं? लघु उपपति या प्रति-उदाहरण से अपने उत्तरों की पुष्टि कीजिए।
(a) निम्नलिखित ग्राफ अहैमिलटोनीय है।

(b) यदि एक सिक्के को 4 बार उछाला जाता है तो पट्ट की तुलना में ज्यादा चित्त आने की प्रायिकता $\frac{5}{16}$ है।
(c) कम से कम एक ऐसा पाँच शीर्ष वाला ग्राफ होता है जिसके शीर्षों की कोटियाँ $2,2,2,2,3$ होती हैं।
(d) यदि $x, y, \quad \mathrm{n} \in N$, तब कथन $(\exists x)(\exists y)\left(x^{2}+y^{2}=\mathrm{n}\right)$ सत्य है।
(e) पुनरावृत्ति संबंध $a_{n}-5 a_{n-1}+6 a_{n-2}=2^{n}$ का

जनक फलन $\frac{\mathrm{e}^{2 x}}{(x-2)(x-3)}$ है।
2. (a) निम्नलिखित सारणी द्वारा दिए गए फलन $f: B^{3} \rightarrow B$ के लिए DNF में बुलीय व्यंजक ज्ञात कीजिए।

$\left(x_{1}, x_{2}, x_{3}\right)$	$f\left(x_{1}, x_{2}, x_{3}\right)$
$(1,1,1)$	1
$(1,1,0)$	0
$(1,0,0)$	1
$(1,0,1)$	1
$(0,1,1)$	1
$(0,1,0)$	1
$(0,0,1)$	0
$(0,0,0)$	1

(b) 5 लड़कों और 3 लड़कियों को एक मेज़ के चारों ओर कितने तरीकों से बिठाया जा सकता है, यदि लड़का B_{1} और लड़की G_{1} संलग्न नहीं है ?
(c) सिद्ध कीजिए कि द्विभाजित ग्राफ में विषम चक्र नहीं होते।
3. (a) $n \in N$ के लिए सिद्ध कीजिए कि :
$\mathrm{C}(\mathrm{n}, 0)^{2}+\mathrm{C}(\mathrm{n}, 1)^{2}+\ldots+\mathrm{C}(\mathrm{n}, \mathrm{n})^{2}=\mathrm{C}(2 \mathrm{n}, \mathrm{n})$
(b) मान लिजिए फूट डालो और जीतो विधि से हम n अलगअलग पूर्णांकों के समुच्चय में लघुत्तम और वृहत्तम संख्याएँ ज्ञात करना चाहते हैं, जहाँ n सम है। अपेक्षित तुलनाओं की संख्या की गणना करने के लिए पुनरावृत्ति संबंध ज्ञात कीजिए।
(c) यदि k - नियमित ग्राफ में 5 से कम लंबाई वाला कोई चक्र नहीं है, दिखाइए कि इसके कम से कम $\mathrm{k}^{2}+1$ शीर्ष अवश्य होने चाहिए।
4. (a) समीकरण $x+y+z+w=18$ के घनात्मक पूर्णांकों में 5 ऐसे कितने हल है जिनके लिए $x \leq 5, y \leq 7, z \leq 8, w \leq 10 ?$
(b) दो अनभिनत पाँसो को फेंका जाता है। इसकी प्रायिकता ज्ञात कीजिए कि पहले पांसे की संख्या दूसरे पांसे पर आने वाली संख्या से बड़ी होगी।
(c) निम्नलिखित कथन की परोक्ष उपपत्ति दीजिए :
"यदि $x . y$ सम है, तब x या y में से एक सम होगा।"
5. (a) स्टर्लिंग संख्या S_{4}^{2} परिकलित कीजिए। 3
(b) पुनरावृत्ति संबंध $\mathrm{a}_{\mathrm{k}}=4 \mathrm{a}_{\mathrm{k}-1}-4 \mathrm{a}_{\mathrm{k}-2}+1$, का 4 जनक फलन ज्ञात कीजिए जहाँ $a_{0}=2, a_{1}=5$.
(c) दिखाइए कि कोटि 1 के ठीक-ठीक दो शीर्षों वाला कोई भी वृक्ष एक पथ है।
6. (a) गणितीय आगमन द्वारा सिद्ध कीजिए कि प्रथम n विषम, घनात्मक पूर्णांकों का योग सभी $\mathrm{n} \in \mathrm{N}$ के लिए n^{2} है।
(b) निम्नलिखित ग्राफ की सहायता से फ्लूरी कलन-विधि को समझाइए। आपने जिन सेतुओं को चुना है वे भी बताइए।

(c) पुनरावृत्ति संबंध :

$$
\mathrm{a}_{\mathrm{n}}=3 \mathrm{a}_{\mathrm{n}-1}+4 \mathrm{a}_{\mathrm{n}-2}, \mathrm{a}_{0}=\mathrm{a}_{1}=1 \text { को हल कीजिए। }
$$

7. (a) निम्नलिखित ग्राफ लिजिए :

(i) इसकी कोर वर्णिक संख्या ज्ञात कीजिए।
(ii) इसकी शीर्ष वर्णिक संख्या ज्ञात कीजिए।
(b) A, B और C एक पंक्ति में खड़े है। पहला व्यक्ति 3 कहता है कि C बीच में है दूसरा कहती है कि वह B है और तीसरा कहता है कि A बीच में है। यदि आप जानते हैं कि A सच कह रहा है और C झूठ बोल रहा है तो पंक्ति में उनके स्थान-निर्धारण के लिए निगमनिक तर्क का प्रयोग कीजिए।
(c) यदि $\mathrm{d}_{\mathrm{n}, \mathrm{k}} \mathrm{k}$ मेल खाने वाली n संख्याओं के क्रमचयों की संख्या है (अर्थात जिनमें ठीक-ठीक k अंकित वस्तुएँ अपनी प्राकृतिक स्थिति में उपस्थित होती है), तब दिखाइए कि $d_{n, k}=C(n, k) d_{n-k}$
