00330

BIMEE-022

B.Tech. MECHANICAL ENGINEERING (BTMEVI) Term-End Examination June, 2013

BIMEE-022 : OPTIMIZATION FOR ENGINEERING DESIGN

Time : 3 hours			Maximum Marks : 70	
Note	: (i, (ii) i)	Answer any five questions. Scientific calculator is allowed.	
1.	(a)	Disc (i) (ii) (iii)	uss the following with suitable sketch Local optimal point Global optimal point Inflection point	.es. 9
	(b)	Find f(x)	the optimal points of the given function $(x-1)^2 - 0.01x^4$	ion 5
2.	Use three iterations of the golden section search 14 method in order to maximize the following function : $f(x) = 10 + x^3 - 2x - 5e^x$ in the interval (-5, 5)			
3.	Use	three	iterations of the bi-section and seca	ant 14

3. Use three iterations of the bi-section and secant 14 method to minimize the following function : $f(x) = 2e^x - x^3 - 10x$ Compare the algorithms in terms of the interval obtained at the end of three iterations.

BIMEE-022

4. Minimize the following function :

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$
 using

simplex search method. Assume the initial simplex points as : $x^{(1)} = (0,0), x^{(2)} = (2,0)$ and $x^{(3)} = (1,1)$ Take $\gamma = 1.5, \beta = 0.5$ and $\epsilon = 10^{-3}$.

- Discuss in detail the algorithm of complex search 14 method for solving multivariable constrained problem in optimization.
- 6. Use two iterations of the cutting plane method to 14 solve the following function : Maximize $f(x) = x_2$ subject to

 $4.5x_1 + x_2^2 \le 18$, $2x_1 - x_2 \ge 1$, $x_1, x_2 \ge 0$ choose a suitable feasible region.

 Perform two iterations of the penalty function 14 method to minimize the given INLP problem : Maximize :

 $x_1^4 + 3xy^2 + (10y+1)^2$ subject to : $x \ge y$ x,y are integers.

BIMEE-022

2