B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination
 June, 2013

BIMEE-013 : FINITE ELEMENT ANALYSIS

Time : 3 hours
Maximum Marks : 70
Note: Answer any five questions. Scientific calculator is allowed. All questions carry equal marks.

1. (a) Explain the basic steps of Rayleigh-Ritz6 method.
(b) Why polynomial terms preferred for shape 6 functions in FEM ?(c) Define the term 'Stiffness Matrix'.2
2. A beam AB of span ' l ' simply supported at the $\mathbf{1 4}$ ends and carrying a concentrated load ' W ' at the centre ' C ' as shown in Figure 1. Determine the deflection at the mid span using Rayleigh-Ritz method and compare it with exact solution. Use a suitable one term trigonometric trial function.

Figure - 1
3. A stepped bar, fixed both ends, is subjected to an 14 axial load of 200 kN at the place of change of cross section as shown in figure 2. Find:
(a) The nodal displacements
(b) The reaction forces
(c) The induced stresses in each material.

$$
\begin{array}{ll}
\text { (1) - Aluminium bar } & \text { (2) - Steel bar } \\
\mathrm{A}_{1}=2400 \mathrm{~mm}^{2} & \mathrm{E}_{1}=70 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{~A}_{2}=600 \mathrm{~mm}^{2} & \mathrm{E}_{2}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}
\end{array}
$$

Figure - 2
4. Consider a 4-bar truss as shown in figure 3. It is 14 given that $E=200$ Gpa and $A=500 \mathrm{~mm}^{2}$ for all the elements. Determine :
(a) Nodal displacements
(b) Support reaction
(c) Element stresses

Figure - 3
5. Determine the deflection and stresses in three 14 different sections of a composite stepped bar loaded as shown in the figure 4.

Figure-4
6. (a) Use Hermite's interpolation formula to 7 derive cubic shape functions for the transverse deflection of beams.
(b) Derive the local finite element stiffness 7 matrix for a beam with combined transverse loading and axial force.
7. Derive the shape functions for a beam finite $\mathbf{1 4}$ element of length 'L' assuming a cubic polynomial in the form
$v(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ by satisfying the boundary conditions:
$v(0)=(0) v(\mathrm{~L})=0$,
$v(0)=0$ and $v(\mathrm{~L})=0$.

