B.Tech. MECHANICAL ENGINEERING
 Term-End Examination
 June, 2013

BIMEE-005 : EXPERIMENTAL STRESS ANALYSIS

Time : 3 hours
Maximum Marks : 70

Note: Answer any seven questions. Each question carry equal marks. Use of scientific calculator is permitted.

1. The fringe order observed at a point in a stressed model is 3.45 with mercury light ($\lambda=548.1 \mathrm{~nm}$). The material fringe constant in tension is $20 \mathrm{kN} / \mathrm{m}$. If the model has a thickness of 0.6 cm , calculate the maximum shear stress at the point.
2. The material fringe constant in tension for a certain photoelastic model is $18 \mathrm{kN} / \mathrm{m}$ when calibrated with sodium light $(\lambda=589.3 \mathrm{~nm})$.

The model under investigation has a thickness of 6 mm . If the model is observed with mercury light ($\lambda=548.1 \mathrm{~nm}$) and the stress $\sigma_{1}-\sigma_{2}$ at a point is 18 kPa , what fringe order will be observed ? Assume that C is independent of λ.
3. What is optical strain gauge ? Explain any one optical strain gauge with the help of a neat diagram.
4. Define gauge sensitivity and gauge factor.

Prove that
$F_{A}=\frac{d R / R}{\epsilon_{a}}=(1+2 \gamma)+C(1-2 \gamma)$.
Where $\mathrm{C}=$ Bridgeman constant
$\gamma \quad=$ Poisson's ratio
$\mathrm{R} \quad=$ resistance of wire
$\epsilon_{a} \quad=$ axial strain in the wire
$\mathrm{F}_{\mathrm{A}} \quad=$ Strain sensitivity of metal
5. Four 600Ω strain gauges are connected to form a 10 wheat stone bridge as shown in figure 1.

Figure-1
Each gauge has a grid area of $50 \mathrm{~mm}^{2}$. Calculate the permissible gauge current I_{g}, voltage V and bridge sensitivity in the following cases:
(a) Power density $\mathrm{P}_{\mathrm{d}}=0.008 \mathrm{~W} / \mathrm{mm}^{2}$.
(b) $\mathrm{P}_{\mathrm{d}}=0.001 \mathrm{~W} / \mathrm{mm}^{2}$,
(c) $P_{d}=0.0004 \mathrm{~W} / \mathrm{mm}^{2}$
(d) $\mathrm{P}_{\mathrm{d}}=0.00004 \mathrm{~W} / \mathrm{mm}^{2}$

Comment on the results obtained.
6. The state of stress at a particular point relative to 10 the $x y z$ coordinate system is given by the following stress matrix :
$\left[\begin{array}{ccc}15 & 10 & -10 \\ 10 & 10 & 0 \\ -10 & 0 & 40\end{array}\right] \mathrm{MPa}$.

Determine the normal stress and the magnitude and direction of the shear stress on a surface intersecting the point and parallel to the plane given by the equation :
$2 x-y+3 z=9$.
7. At a point P in a body, $\sigma_{x}=100 \mathrm{MPa}$,
$\sigma_{y}=-50 \mathrm{MPa}, \underset{z}{\sigma}=-50 \mathrm{MPa}$,
$\tau_{x y}=\tau_{y z}=\tau_{z x}=100 \mathrm{MPa}$.
Determine the normal and shearing stresses on a plane that is equally inclined to all the three axes.
8. An elastic body under the action of external forces has a displacement field given by :
$\mathrm{u}=\left(x^{2}+y\right) \hat{\mathrm{i}}+(3+z) \hat{\mathrm{j}}+\left(x^{2}+2 y\right) \hat{\mathrm{k}}$.
Determine the principal strains at $(3,1,-2)$ and the direction of the minimum principal strain.
9. Compute Lame's coefficients λ and G for concrete
with $\mathrm{E}=28 \times 10^{6} \mathrm{kPa}$, and $\gamma=0.2$, where $\mathrm{E}=$ Young's modulus, and $\gamma=$ Poisson's ratio.
10. If $\epsilon_{x x}=0.001, \epsilon_{y}=-0.003, \epsilon_{z z}=0, \gamma_{x y}=0, \quad 10$ $\gamma_{y z}=0.0003$, and $\gamma_{x z}=-0.002$,
Determine the rectangular stress components, symbols carry usual meaning.
Assume $\mathrm{E}=207 \times 10^{6} \mathrm{kPa}$, and $G=80 \times 10^{6} \mathrm{kPa}$.

