No. of Printed Pages : 3

B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

June, 2013

BIMEE-004 : OPTIMISATION TECHNIQUES IN ENGINEERING

Tim	e : 3 h	nours Maximum Marks	Maximum Marks : 70			
Not	C	Answe r any five of the following questions. Each ques carries equal mark s. Assume a suitable value for nissing data.				
1.	(a)	Determine the maximum and minimum values of the following function : $f(x) = 24x^5 - 90x^4 + 80x^3 + 10$	7			
	(b)	Find the maximum and minimum of the following function : $f(x_1, x_2, y_3) = \frac{2}{3} + \frac{2}{3} $	7			
2.	(a)	$f(x_1, x_2, x_3) = x_1^2 - 12x_1 + x_2^2 - 8x_2 + x_3^2 - 4x_3$ Minimise $Z = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100$	7			
	(b)	Subject to : $x_1 + x_2 + x_3 = 20$ $x_1, x_2, x_3 \ge 0$ State the necessary and sufficient conditions for the maximum of a multivariable function f(x).	7			

006900

BIMEE-004

1

3. (a) Minimize $z = x_1^2 + x_2^2 + x_3^2$

Subject to : $x_1 + x_2 + 3x_3 = 2$ $5x_1 + 2x_2 + x_3 = 5$ $x_1, x_2, x_3 \ge 0$

(b) Find the dimensions of a rectangular 7 parallelopiped with largest volume whose sides are parallel to the coordinate planes to be inscribed in the ellipsoid :

7

$$g(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0.$$

- 4. (a) Explain the procedure of Branch and 7 Bound method using a suitable example.
 - (b) Distinguish between Newton and quasi-Newton methods.
- Using MODI method find the optimum solution 14 of the following transportation problem :

	D ₁	D ₂	D ₃	D_4	Supply
S ₁	21	16	25	13	11
S ₂	17	18	14	23	13
S ₃	32	27	18	41	19
Demand	6	10	12	15	

BIMEE-004

2

- 6. (a) With the help of a suitable example, explain 7 the Minimax and Maximin Algorithm for decision making.
 - (b) Explain the procedure for the solution of 7 an Integer Programming Problem by cutting plane methods.
- 7. Write short notes on **any two** of the following :
 - (a) Genetic Algorithms

2x7 = 14

- (b) Discrete Simulation
- (c) Heuristic Methods
- (d) Constrained optimization