B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

June, 2013

BIMEE-004 : OPTIMISATION TECHNIQUES IN ENGINEERING

Time : 3 hours
Maximum Marks : 70
Note: Answer any five of the following questions. Each question carries equal marks. Assume a suitable value for any missing data.

1. (a) Determine the maximum and minimum

7
values of the following function:
$f(x)=24 x^{5}-90 x^{4}+80 x^{3}+10$
(b) Find the maximum and minimum of the 7 following function :

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-12 x_{1}+x_{2}^{2}-8 x_{2}+x_{3}^{2}-4 x_{3}
$$

2. (a) Minimise 7
$\mathrm{Z}=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+10 x_{1}+8 x_{2}+6 x_{3}-100$
Subject to :
$x_{1}+x_{2}+x_{3}=20$
$x_{1}, x_{2}, x_{3} \geqslant 0$
(b) State the necessary and sufficient conditions 7 for the maximum of a multivariable function $f(x)$.
3. (a) Minimize $z=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$

Subject to :
$x_{1}+x_{2}+3 x_{3}=2$
$5 x_{1}+2 x_{2}+x_{3}=5$
$x_{1}, x_{2}, x_{3} \geqslant 0$
(b) Find the dimensions of a rectangular
parallelopiped with largest volume whose sides are parallel to the coordinate planes to be inscribed in the ellipsoid :
$g(x, y, z) \equiv \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1=0$.
4. (a) Explain the procedure of Branch and Bound method using a suitable example.
(b) Distinguish between Newton and quasiNewton methods.
5. Using MODI method find the optimum solution of the following transportation problem:

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	21	16	25	13	11
$\mathrm{~S}_{2}$	17	18	14	23	13
$\mathrm{~S}_{3}$	32	27	18	41	19
Demand	6	10	12	15	

6. (a) With the help of a suitable example, explain the Minimax and Maximin Algorithm for decision making.
(b) Explain the procedure for the solution of 7 an Integer Programming Problem by cutting plane methods.
7. Write short notes on any two of the following :
(a) Genetic Algorithms
$2 \times 7=14$
(b) Discrete Simulation
(c) Heuristic Methods
(d) Constrained optimization
