# B.Tech. MECHANICAL ENGINEERING (BTMEVI) 

Term-End Examination
00874
June, 2013
BIME-034 : HEAT AND MASS TRANSFER
Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) State the Fourier law of heat conduction and $7+7$ by using it derive an expression for steady state heat conduction through a plane wall of thickness $L$ that maintains its two surfaces at temperatures $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ respectively.
(b) A wall is constructed of several layers. The first layer consists of brick ( $\mathrm{K}=0.66 \mathrm{~W} / \mathrm{mK}$ ), 25 cm thick, the second layer 2.5 cm thick mortrar ( $\mathrm{K}=0.7 \mathrm{~W} / \mathrm{mK}$ ), the third layer 10 cm thick limestone $(\mathrm{K}=0.66 \mathrm{~W} / \mathrm{mK})$ and outer layer of 1.25 cm thick plaster ( $\mathrm{K}=0.7 \mathrm{~W} / \mathrm{mK}$ ). The heat transfer coefficients of interior and exterior of the wall fluid layers are $5.8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, and 11.6 W/m ${ }^{2} \mathrm{~K}$ respectively.

Find :
(i) Over all heat transfer coefficient
(ii) Overall thermal resistance per $\mathrm{m}^{2}$,
(iii) Rate of heat transfer per $\mathrm{m}^{2}$, if the interior of the room is at $26^{\circ} \mathrm{C}$ while outer air is at $-7^{\circ} \mathrm{C}$.
2. (a) Prove that the thermal resistance offered by a hollow long cylinder of constant thermal conductivity is given by

$$
\mathrm{R}_{\mathrm{cyL}}=\frac{l_{\mathrm{n}}\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}{2 \pi \mathrm{LK}}
$$

Where symbols carries their usual meaning.
(b) A composite insulating wall has three layers of material held together by 3 cm diameter aluminium rivet per $0.1 \mathrm{~m}^{2}$ of surface. The layers of material consists of 10 cm thick brick with hot surface at $200^{\circ} \mathrm{C}, 1 \mathrm{~cm}$ thick wood with cold surface at $10^{\circ} \mathrm{C}$. These two layers are interposed by third layer of insulating material 25 cm thick. The conductivity of the material are :
$\mathrm{K}_{\text {brick }}=0.93 \mathrm{~W} / \mathrm{mK}$; $\mathrm{K}_{\text {insulation }}=0.12 \mathrm{~W} / \mathrm{mK}$
$\mathrm{K}_{\text {wood }}=0.175 \mathrm{~W} / \mathrm{mK} ; \mathrm{K}_{\text {aluminium }}=204 \mathrm{~W} / \mathrm{mK}$.
Assuming one dimensional heat flow. Calculate the percentage increase in heat transfer rate due to rivets.
3. (a) How does transient heat conduction differ $7+7$ from steady state heat conduction? What is fourier number? What is its physical significance?
(b) A steam pipe is covered with two layers of insulation, first layer being 3 cm thick and second 5 cm . The pipe is made of steel ( $\mathrm{K}=0.58 \mathrm{~W} / \mathrm{mK}$ ) having ID of 160 mm and OD of 170 mm . The inside and outside film co-efficients are $30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, and $5.8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, respectively. Calculate the heat lost per metre of pipe, if the steam temperature is $300^{\circ} \mathrm{C}$ and air temperature is $50^{\circ} \mathrm{C}$. The thermal conductivity of two insulating materials are $0.17 \mathrm{~W} / \mathrm{mK}$, and $0.093 \mathrm{~W} / \mathrm{mK}$, respectively.
4. (a) What are the differences between natural $7+7$ and forced convection?
(b) Estimate heat transfer rate from a 100 W incandescent bulb at $140^{\circ} \mathrm{C}$ to an ambient at $24^{\circ} \mathrm{C}$. Approximate the bulb as 60 cm diameter sphere. Calculate percentage of power loss by natural convection.
Use following correlation and air properties:

$$
\mathrm{N}_{\mathrm{u}}=0.60\left(\mathrm{G}_{\mathrm{r}} \mathrm{P}_{\mathrm{r}}\right)^{1 / 4}
$$

The properties of air at $82^{\circ} \mathrm{C}$ are :

$$
\begin{aligned}
& v=21.46 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} ; \\
& \mathrm{K}_{\mathrm{f}}=30.38 \times 10^{-3} \mathrm{~W} / \mathrm{mK} ; \mathrm{P}_{\mathrm{r}}=0.699
\end{aligned}
$$

5. (a) What is a black body ? What are its $7+7$ properties? Why does a cavity with a small hole behave as a black body?
(b) Calculate the equilibrium temperature for a plate, exposed to a solar flux of $700 \mathrm{~W} / \mathrm{m}^{2}$ and convection environment at $25^{\circ} \mathrm{C}$, with convection co-efficient of $10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. If the plate is coated with
(i) White paint : $\alpha_{\text {sun }}=0.12 ; \alpha_{\text {plate }}=0.9$
(ii) Flat black paint :

$$
\alpha_{\text {sun }}=0.96, \alpha_{\text {plate }}=0.95
$$

(a) What is a heat exchanger ? Where are they $7+7$ used ? What do you mean by fouling factor ? State the causes of fouling.
(b) A heat exchanger is required to cool $55000 \mathrm{~kg} / \mathrm{hr}$ of alcohol from $66^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ using $40000 \mathrm{~kg} / \mathrm{hr}$ of water entering at $5^{\circ} \mathrm{C}$.
Calculate :
(i) exit temperature of water
(ii) heat transfer rate
(iii) surface area required for parallel flow type and counter flow type of heat exchanger.
Take overall heat transfer coefficient $\mathrm{U}=580 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

$$
\begin{aligned}
& C_{p}(\text { alcohol })=3760 \mathrm{~J} / \mathrm{kg} \mathrm{~K} . \\
& \left.C_{p} \text { (water }\right)=4180 \mathrm{~J} / \mathrm{kg} \mathrm{~K} .
\end{aligned}
$$

7. (a) Explain Fick's law of diffusion. What is mass diffusivity? What is its dimension ?
(b) Air at $50^{\circ} \mathrm{C}$ and 1 atm flow over the surface of a water reservoir at an average velocity of $2.3 \mathrm{~m} / \mathrm{sec}$. The water surface is 0.65 m long and 0.65 m wide. The water surface temperature is estimated at $30^{\circ} \mathrm{C}$. The relative humidity of air is $40 \%$. The density of air is $1.105 \mathrm{~kg} / \mathrm{m}^{3}$ and its viscosity is $1.943 \times 10^{-5} \mathrm{~kg} / \mathrm{ms}$. Calculate the amount of water vapour that evaporates per hour per sqm of water surface and state the direction of diffusion.
