DIPLOMA VIEP MECHANICAL ENGINEERING (DMEVI)

Term-End Examination

June, 2013

BIME-026: HEAT TRANSFER

Time : $\mathbf{2}$ hours
Maximum Marks : 70
Note: Attempt any five questions. Assume suitable missing data if any.

1. (a) What are the three modes of heat transfer ? 7

Discuss the difference between them.
(b) State and explain Fourier's law of heat 7 conduction.
2. (a) Define and explain critical thickness of an insulation.
(b) A composite wall is made up of two slabs 7 with outermost surface temperatures maintained at $1300^{\circ} \mathrm{C}$ and $115^{\circ} \mathrm{C}$. The first slab has a thickness of 500 mm and thermal conductivity of $1.4 \mathrm{~W} / \mathrm{mK}$ and the thickness and the thermal conductivity of the second slab are 161 mm and $0.35 \mathrm{~W} / \mathrm{mK}$ respectively. Calculate the conduction heat transfer through this composite wall per square metre and the temperature of the surfaces in contact.
3. (a) How does transient heat conduction differ 7 from steady conduction?
(b) A copper slab of surface area $0.25 \mathrm{~m}^{2}$ and 7 thickness 10 mm has a uniform temperature of $300^{\circ} \mathrm{C}$. Its temperature is suddenly lowered by convection in ambient temperature of $40^{\circ} \mathrm{C}$ with $\mathrm{h}=90 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. Calculate the time required for the slab to reach the temperature of $110^{\circ} \mathrm{C}$. Take $\rho=9000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{C}=0.38 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$ and $\mathrm{K}=370 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$.
4. Find the rate of convective heat transfer from a $\mathbf{1 4}$ 0.4 m vertical square plate maintained at uniform temperatures $130^{\circ} \mathrm{C}$ in ambient air at $25^{\circ} \mathrm{C}$. Take $v=20.75 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \quad \mathrm{lr}=0.697$ and $\mathrm{K}=0.03 \mathrm{~W} / \mathrm{mK}$.
5. Explain the method of classifying regions as laminor, transition and turbulent when forced convection heat transfer takes place over a flat plate.
6. (a) Define total emissive power and monochromatic emissive power of a black body.
(b) Explain unstable film boiling. Give 7 examples.
7. Define the following terms. $3.5 \times 4=14$
(a) Biot Number.
(b) Black body and gray body.
(c) Wien's displacement law.
(d) Stefon - Bottzman Law.

