No. of Printed Pages : 5
OIEE-001

B.TECH. DECVI/DELVI/DCSVI/ACECVI/ ACELVI/ACCSVI

Term-End Examination

June, 201300884

OIEE-001 : BASICS OF ELECTRICAL ENGINEERING

Time : 2 hours
Maximum Marks : 70
Note: (i) All the questions are to be answered in english language only.
(ii) Attempt any five questions Q. 1 is compulsory.

1. Attempt the following objective type questions.
(a) The unit of electrical energy is :
$2 \times 7=14$
(i) Watt-sec (ii) Joule
(iii) kWh (iv) All of the above
(b) An ideal voltage source should have :
(i) zero internal resistance
(ii) infinite internal resistance
(iii) large value of emf
(iv) low value of current
(c) Hysteresis loss in a magnetic material depends upon:
(i) Area of hysteresis loop
(ii) Frequency of reversal of field
(iii) Volume of the magnetic material
(iv) All of the above
(d) When the current flowing through a circuit is switched off then,
(i) induced current flows in the same direction as that of the main current.
(ii) induced current flows in opposite as that of the main current.
(iii) no current will flow
(iv) None
(e) Power factor of a pure inductive circuit is:
(i) 0° leading
(ii) 0° lagging
(iii) 90° leading
(iv) 90° lagging
(f) The power dissipated in the pure capacitance of an R-C circuit will be :
(i) Zero
(ii) Small
(iii) High
(iv) Equal to dissipated in R
(g) In case of 3-phase Y connected system relation between V_{L} and V_{p} is :
(i) $V_{L}=\sqrt{3} V_{P}$
(ii) $\mathrm{V}_{\mathrm{P}}=\sqrt{3} \mathrm{~V}_{\mathrm{L}}$
(iii) $V_{P}=\frac{V_{L}}{3}$
(iv) $\mathrm{V}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{P}}}{3}$
2. (a) State ohm's law. Discuss the effect of temperature on the resistance of a material.
(b) Calculate the current in 5Ω resistance in the following network.
$7 \times 2=14$

3. (a) Prove that if three resistances of R ohm are connected in Δ then their equivalent in the
$7 \times 2=14$ Y will be $\frac{R}{3}$.
(b) State the Venin's and Norton's theorem.
4. (a) Discuss the construction, working and applications of lead acid batteries.
$7 \times 2=14$
(b) What are silver oxide cells ? Discuss in detail.
5. (a) Explain statically and dynamically induced emf.
$7 \times 2=14$
(b) What is Reluctance ? Give the units of mmF , reluctance, flux and derive the relation between them.
6. (a) Find the r.m.s. and average value of following wave form. Also find Form Factor.

$$
7 \times 2=14
$$

(b) An impedance of $(2+\mathrm{j} 6) \Omega$ is connected in series with two impedances of $(10+j 4) \Omega$ and $(12-j 8) \Omega$ which are in parallel ? Calculate the supply current and power factor if the circuit is connected to 200 V .
7. (a) In 3-phase Δ - connected system prove that

$$
\mathrm{I}_{\mathrm{L}}=\sqrt{3} \mathrm{I}_{\mathrm{P}} \text { and } \mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi
$$

$7 \times 2=14$
(b) 3 coils, each having an impedance of $(20+j 15) \Omega$ are connected in γ to a 400 V . 3-phase, 50 Hz supply. Calculate
(i) Line current
(ii) Power factor
(iii) Power supplied
8. Write short notes on any four :
(a) Series and parallel connection of batteries
(b) B - H Curve
(c) Principle of Self and Mutual Induction
(d) Behaviour of $\mathrm{R}-\mathrm{C}$ series circuit on sinusoidal input
(e) Parallel Resonance
(f) Advantages of 3-phase system over 1-phase system

