No. of Printed Pages : 2

BIEEE-009

ÓÖ	B.Tech. ELECTRICAL ENGINEERING (BTELVI)	
22	Term-End Examination	
01	June, 2013	
	BIEEE-009 : DIGITAL CONTROL SYSTEM DESIGN	
Time	: 3 hours Maximum Marks :	70
Note	: (i) Attempt any seven questions. (ii) Each question carry equal marks.	
1.	Obtain the mathematical model and frequency domain characteristics of Zero Order Hold (ZOH).	10
2.	 Explain : (a) Routh's stability criterion on the γ - plane (b) Bilinear transformation 	10
3.	What are the specifications of frequency response and time response features of a digital control system ?	10
4.	Consider a control system \dot{x} (t) = Ax(t) + Bu(t) y (t) = Cx(t) Draw the state diagram and obtain the transfer function. Where $A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & -10 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}.$	10

BIEEE-009

.

Explain : 10 5. Jury's stability criterion (a) PID controllers (b) Check the stability by Jury's Test : 106. $Z^3 + 3.3Z^2 + 4Z + 0.8 = 0$ (a) $2Z^4 + 7Z^3 + 10Z^2 + 4Z + 1 = 0$ (b) Defin the concept of complete controllability 10(a) 7. and observability. Explain pole placement design of controllers (b) using state feedback for SISO system. A state equation of a digital control system : 108. x(K+1) = Ax(K) + Bu(K)Obtain the state transition = matrix ϕ (K) where

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$$

9. Draw and obtain Jordan canonical form of given **10** transfer function.

G(S) =
$$\frac{(S+4)}{(S+2)^2(S+5)}$$

10. Define Cayley Hamilton theorem. Evaluate state **10** transition matrix ϕ (t) for a given system $\dot{x} = Ax$

when A =
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$$

BIEEE-009