No. of Printed Pages : 3

BIEEE-007

B.Tech. ELECTRICAL ENGINEERING BTELVI

Term-End Examination

June, 2013

BIEEE-007 : COMPUTER APPLICATIONS IN P.S.

Time : 3 Hours

Maximum Marks : 70

- *Note* : Attempt any *seven* questions. All questions carry *equal* marks. Assume missing data, if any.
- 1. Form (Z_{BUS}) matrix of the Network shown in 10 (fig.1) using (Z_{BUS}) building algorithm.

(Fig. 1)

Each line has Impedance of (0.06 + j0.5) p.u.

BIEEE-007

2. For a Power System, $[Z_{BUS}]$ is give as :

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ j0.25 & j0.20 & j0.16 & j0.14 \\ j0.20 & j0.23 & j0.15 & j0.15 \\ j0.16 & j0.15 & j0.20 & j0.12 \\ j0.14 & j0.15 & j0.12 & j0.20 \end{bmatrix} \text{ p.u.}$$

Assume $U_g = 0.98 \angle 0^\circ p.u., V_3 = 0.975 \angle 0^\circ.p.u;$. $V_4 = 0.99 \angle 0^\circ.p.u.$ If two lines Z_x and Z_y of p.u. reactances j0.05 and j0.06 be connected between bus 2-3 and 3-4 respectively. Find currents I_x and I_y flowing through Z_x and Z_y .

- What are current injection distribution factor and 10 line outage distribution factor ? How are they used in contingency analysis ?
- Explain clearly with a flow chart of the 10 computational procedure for load flow solutions using Newton Raphson method when the system contains all types of buses.
- Develop load flow equations suitable for solution 10 by :
 - (a) Gauss Seidel method
 - (b) Newton Raphson method, using nodal admittance approach.

BIEEE-007

2

10

- Explain the fundamental Cut Set Matrix by 10 taking an example.
- Explain the concept of decoupled methods with 10 reference to Load flow studies.
- Write an algorithm for finding Bus Impedance 10 matrix in a power system network.
- 9. Write short note on *any two* of the following : 2x5=10
 - (a) Tap-Changing Transformer
 - (b) Representation of Transmission-lines
 - (c) Multifort representation of a power system