DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

Term-End Examination
June, 2013

BIEE-033 : ELECTRICAL CIRCUIT THEORY

Time : $\mathbf{2}$ hours Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks.

1. (a) Explain the difference between:
(i) Potential and potential difference
(ii) Resistance and resistivity
(iii) Active and passive element
(b) State and explain Ohms Law. What are the 4 limitations of Ohm's Law?
(c) An Electric iron is rated as $1 \mathrm{~kW}, 250 \mathrm{~V}$. Calculate the current taken by it if it is connected to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.
2. (a) Two resistances connected in series having 7 18Ω equivalent resistance and when connected in parallel having 4Ω equivalent resistance. Find the value of each resistance.
(b) Calculate equivalent resistance between $a-b$ terminal of the network shown in fig -1 .

Fig. 1
3. (a) Find current flowing in each branch of the 7 network as shown in fig. 2 using Nodal analysis.

Fig. 2
(b) Find equivalent resistance across a-b 7 terminal of the network shown in fig. 3 .

Fig. 3
4. (a) State and prove maximum power transfer theorem.
(b) State and explain Thevenin Theorem. List 7 the steps required to obtain the Thevenin's equivalent circuit.
5. Find rms and average value of half wave rectifier 14 output wave form as shown in fig. 4.

Fig. 4
6. (a) A voltage of $200 \sin 100 \pi t$ is applied to a 7 coil having $R=200 \Omega$ and $L=0.38 \mathrm{H}$. Find the expression for current and power taken by coil.
(b) Explain the following terms as applied to 7 ac circuits.
(i) Impedance
(ii) Power factor
(iii) Phase angle
7. (a) Explain active power, reactive power and 7 apparant power. Also explain their significance.
(b) Explain resonance in parallel RLC circuit. 7 Derive expression for resonance frequency.
8. Write short notes on any four of the following :
(a) Duality and dual network
$3.5 \times 4=14$
(b) RLC series resonance
(c) Super position Theorem
(d) Star - delta Transformation
(e) Source Transformation
(f) Norton Theorem

