# DIPLOMA VIEP ELECTRONICS AND <br> - COMMUNICATION ENGINEERING (DECVI)/ ADVANCED LEVEL CERTIFICATE COURSE IN - ELECTRONICS AND COMMUNICATION ENGINEERING (ACECVI) 

Term-End Examination

June, 2013

## BIEL-030 : DIGITAL ELECTRONICS

Time : $\mathbf{2}$ hours
Maximum Marks : 70
Note :(i) Attempt any five questions. Each question carries equal marks.
(ii) Question no one is compulsory (objectives).
(iii) All the questions are to be answered in English Language only

1. Attempt all objective questions.
(a) A 4-bit binary number whose $2^{\prime}$ S compliment is also same is : $\quad \mathbf{7 \times 2 = 1 4}$

| (i) 0001 | (ii) 0101 |
| :--- | :--- | :--- |
| (iii) 0111 | (iv) 1000 |

(b) $\mathrm{A}+\overline{\mathrm{A}}=$ $\qquad$ .
(i) 0
(ii) 1
(iii) A
(iv) $\overline{\mathrm{A}}$
(c) A demultiplexer is represented by :
(i) $2^{n} \times 1$
(ii) $2^{n} \times n$
(iii) $\mathrm{n} \times 2^{\mathrm{n}}$
(iv) $1 \times 2^{n}$
(d) Which has the highest power dissipation Per gate.
(i) TTL
(ii) CMOS
(iii) ECL
(iv) PMOS
(e) In a left shift register, shifting a bit by one means :
(i) division by 2
(ii) Multiplication by 2
(iii) Subtraction of 2
(iv) Addition of 2
(f) A XOR gate has inputs A and B and output Y . Then the output equation is :
(i) $Y=A \bar{B}+A B$
(ii) $\mathrm{Y}=\mathrm{AB}+\overline{\mathrm{A} B}$
(iii) $Y=\bar{A} \bar{B}+A B$
(iv) $\bar{A} B+A \bar{B}$
(g) Which is known as Flash converter.
(i) Weighted resistor $\mathrm{D} / \mathrm{A}$ converter
(ii) Parallel A/D converter
(iii) Stair step A/B converter
(iv) Up-down counter type $A / D$ converter.
2. (a) Give the binary, BCD, excess - 3, gray code, Hexadecimal and octal representations of decimal numbers 5 , and 8 . $2 \times 7=14$
(b) Design a binary to gray converter circuit of 3 - bit (variable)?
3. (a) Simplify the given boolean Function using k -map and implement the minimized expression using Logic gates.
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,2,9,10,11,14,15)$
(b) Using NAND gate implement OR, AND, XOR and XNOR gates.
4. (a) Implement 8:1 Multiplexer using 4:1 Multiplexer and explain its operation. $2 \times 7=14$
(b) Design and implement MOD-5 synchronous counter using J - K Flip Flop.
5. (a) With a neat diagram explain the operation of 4 - bit PISO (Parallel Input Serial Output) shift register. $2 \times 7=14$
(b) Draw the truth table of two input NAND gate and NOR gate and implement them using CMOS Logic.
6. (a) Explain the operation of a Master slave $J$ - K flip Flop and show how the race around condition is eliminated. $2 \times 7=14$
(b) Differentiate between SRAM and DRAM.
7. (a) Convert the following functions to canonical Form :
(i) $y=A+B C+A B C$
(ii) $y=(A+B)(\bar{B}+C)$
(b) Obtain the reduced state table and reduced state diagram for a sequential circuit whose state diagram is shown in figure.

8. Write short notes on any four. $3.5 \times 4=14$
(a) Propagation delay and fan in and Fan out.
(b) EPROM and EEPROM
(c) ECL Logic family
(d) BCD Arithmatic
(e) Excitation table of Flip Flops.
(f) Boolean Algebra - Basic - Laws

