BIEL-030

DIPLOMA VIEP ELECTRONICS AND O COMMUNICATION ENGINEERING (DECVI)/ ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION O ENGINEERING (ACECVI)

Term-End Examination

June, 2013

BIEL-030 : DIGITAL ELECTRONICS

Time : 2 hours

Maximum Marks : 70

- Note :(i) Attempt any five questions. Each question carries equal marks.
 - (ii) Question no one is compulsory (objectives).
 - (iii) All the questions are to be answered in English Language only
- **1.** Attempt all objective questions.

(a)	A 4	l-bit l	binary	nu nu	ımbeı	r wh	ose	2′S
	compliment is also same is :							7x2=14
	(i)	000	1 ((ii)	010	1		
	(iii)	011	1 ((iv)	100	0		
(b)	$A + \overline{A} = \underline{\qquad}$							
	(i)	0	(ii) 1	l	(iii)	А	(iv)	Ā
(c)	A demultiplexer is represented by :							
	(i)	$2^n \times 1$	i ((ii)	$2^n \times r$	n		
	(iii)	$n \times 2^r$	י ((iv)	1×2'	n		

BIEL-030

P.T.O.

- (d) Which has the highest power dissipation Per gate.
 - (i) TTL(ii) CMOS(iii) ECL(iv) PMOS
- (e) In a left shift register, shifting a bit by one means :
 - (i) division by 2
 - (ii) Multiplication by 2
 - (iii) Subtraction of 2
 - (iv) Addition of 2
- (f) A XOR gate has inputs A and B and outputY. Then the output equation is :
 - (i) $Y = A\overline{B} + AB$ (ii) $Y = AB + \overline{AB}$
 - (iii) $Y = \overline{A} \overline{B} + AB$ (iv) $\overline{A}B + A\overline{B}$

(g) Which is known as Flash converter.

- (i) Weighted resistor D/A converter
- (ii) Parallel A/D converter
- (iii) Stair step A/B converter
- (iv) Up-down counter type A/D converter.
- (a) Give the binary, BCD, excess 3, gray code, Hexadecimal and octal representations of decimal numbers 5, and 8.
 - (b) Design a binary to gray converter circuit of3 bit (variable) ?

BIEL-030

 (a) Simplify the given boolean Function using k-map and implement the minimized expression using Logic gates. 2x7=14

ı

f (A, B, C, D) = $\sum m$ (1, 2, 9, 10, 11, 14, 15)

- (b) Using NAND gate implement OR, AND, XOR and XNOR gates.
- 4. (a) Implement 8:1 Multiplexer using 4:1
 Multiplexer and explain its operation. 2x7=14
 - (b) Design and implement MOD-5 synchronous counter using J - K Flip Flop.
- (a) With a neat diagram explain the operation of 4 bit PISO (Parallel Input Serial Output) shift register. 2x7=14
 - (b) Draw the truth table of two input NAND gate and NOR gate and implement them using CMOS Logic.
- 6. (a) Explain the operation of a Master slave
 J K flip Flop and show how the race around
 condition is eliminated. 2x7=14
 - (b) Differentiate between SRAM and DRAM.
- 7. (a) Convert the following functions to canonical Form : 2x7=14

(i)
$$y = A + BC + ABC$$

(ii) $y = (A + B) (\overline{B} + C)$

BIEL-030

(b) Obtain the reduced state table and reduced state diagram for a sequential circuit whose state diagram is shown in figure.

8. Write short notes on **any four**.

3.5x4 = 14

- (a) Propagation delay and fan in and Fan out.
- (b) EPROM and EEPROM
- (c) ECL Logic family
- (d) BCD Arithmatic

.

- (e) Excitation table of Flip Flops.
- (f) Boolean Algebra Basic Laws

BIEL-030