# DIPLOMA VIEP ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI)/ ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION ENGINEERING (ACECVI) 

Term-End Examination 00001<br>June, 2013

## BIEL-028 : CIRCUITS AND NETWORKS

Time : 2 hours<br>Maximum Marks : 70

Note :(i) Attempt five questions in all.
(ii) Question No. 1 is compulsory.
(iii) Use of scientific calculator is permitted.

1. Mention true or false for the statement given below.

$$
2 \times 7=14
$$

(a) If same current passes through each resistor of a combination, they must be connected in parallel.
(b) The impedance of a series RL circuit is given by the algebraic sum of $R$ and $x_{1}$.
(c) Greater the Bandwidth, higher the selectivity.
(d) Given poles and zeros, the network function can be determined.
(e) A tuned circuit is a resonant circuit.
(f) A Band pass filter can be converted into a bandstop filter simply by interchanging its resonant circuits.
(g) Laplace transform is used to convert time domain signal to frequency domain signal.
2. (a) Determine the current through $10 \Omega$ resistor for the circuit shown in fig (i).
$2 \times 7=14$


Fig. (i)
(b) Find the current $i$ using superposition theorem for the circuit shown in fig (ii).


Fig. (ii)
3. For a parallel resonant circuit shown in fig (iii),
(a) Find the resonant frequency
(b) $Q$ of the circuit
(c) Bandwidth
(d) Circuit impedance at resonance


Fig. (iii)
4. (a) The RC network shown in fig (iv) acts as a low pass filter. Derive expression for cut off frequency and find the value of ' C ' If $\mathrm{R}=2 \mathrm{k} \Omega$, and $\mathrm{fc}=800 \mathrm{~Hz}$ ? $2 \times 7=14$


Fig. (iv)
(b) Derive the reciprocity condition for $y$-parameter.
5. (a) Derive $z$ - parameter of the network shown in fig (v). $2 \times 7=14$


Fig. (v)
(b) Two identical sections of the network shown in fig (vi) are connected in parallel. Calculate the Y-parameters of the resulting network.

6. (a) Discuss the natural response of RC series network.
$2 \times 7=14$
(b) The network shown in fig (vii) is in steady state with the switch $k$ closed. At $t=0$, the switch is opened. Determine the voltage across the switch $\mathrm{V}_{\mathrm{k}}$ at $\mathrm{t}=0^{+}$.


Fig. (vii)
7. (a) For the network shown in fig (viii) find $\mathbf{1 0}$ transfer admittance $Y_{12}$ (s) and plot the poles and zeros of the function.

(b) State the significance of poles and zeros.
8. Write short notes on any four :
(a) Composite low pass filter
(b) Iterative impedance
(c) Inter relation between z and h parameters.
(d) Series resonance
(e) Constant K type band stop filter.

