No. of Printed Pages : 4

BICS-033

00386

DIPLOMA VIEP COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

June, 2013

BICS-033 : NUMERICAL METHODS AND COMPUTATION

Time	e : 2 h	ours	Maximum Marks : 70						
Note : Attempt any five questions. Question No. 1 is Compulsory. Calculator is allowed.									
1.	(a)	If a number is rounded to k then the absolute error is :			decimal places, 7x2=14				
		(i)	$\frac{1}{2}10^{k-1}$	(ii)	$\frac{1}{2}10^{-k}$				
		(iii)	$\frac{1}{3}$ 10 ^k	(iv)	$\frac{1}{4}10^{-k}$				
	(b)	The Newton - Raphson method fails when :							
		(i)	f'(x) < 0	(ii)	f'(x) > 0				
		(iii)	f'(x) = 0	(iv)	Never fails				
	(c)	The relation between E, Δ and ∇ is :							
		(i)	$\Delta = \mathbf{E}.\nabla$	(ii)	$\mathbf{E}=\nabla-\Delta$				
		(iii)	$\Delta = \frac{E}{\nabla}$	(iv)	None of these				

(d) Relation between E and Δ is :

(i) $E = 1 + \Delta$ (ii) $E = 1 - \Delta$ (iii) $E = \Delta - 1$ (iv) None of these

- (e) Interpolatian is the technique of estimating the value of a function for any ______.
- (f) Any solution to a L.P.P which satisfies the non-negativity restrictions of the problem is called its _____.
- (g) Whenever Trapezoidal rule is applicable Simpson's $\frac{1}{3}$ rd rule can also be applied. (True/False).
- 2. (a) Find a root of the equation, $x \cos x = 0$, 7 using bisection method correct to 3 decimal places.
 - (b) Using Regula-Falsi method find a root of 7 $2x - \log x = 6$ correct to 3 decimal places.
- 3. (a) Find a root of the equation $x^3 + x^2 + x + 7 = 0$ 7 correct to 3 decimal places by Secant method.
 - (b) Find the positive root of $x^4 x = 10$ correct 7 to three decimal places using Newton -Raphson method.

BICS-033

- 4. (a) Solve by Gauss elimination method for the 7 following equations : 2x + 2y + z = 123x + 2y + 2z = 85x + 10y - 8z = 10
 - (b) Solve by Gauss-Seidal method, for the 7 following equations :
 2x + y + 6z = 9
 8x + 3y + 2z = 13
 x + 5y + z = 7
- (a) Construct Newton's forward interpolation 7 polynomial for the following data :

х	:	4	6	8	10
у	:	1	3	8	16

- (b) Given $u_1 = 40$, $u_3 = 45$, $u_5 = 54$, find u_2 and 7 $u_{4.}$
- 6. (a) Derive Lagrange's interpolation formula. 7 Given the values (b) 7 5 7 11 13 17 x : 150 392 1452 2366 f(x): 5202

Evaluate *f* (a) using Lagrange's formula.

7. (a) Evaluate $\int_{0}^{5} \frac{dx}{4x+5}$ using Simpson's 7

 $\frac{1}{3}$ rule by dividing the range into 10 equal

parts. Deduce the value of \log_e^5 .

BICS-033

P.T.O.

(b) Using Runge-Kutta method, solve 7 $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1, compute y(0.2)taking h = 0.1.

8. Explain any four of the following : 3.5x4=14

- (a) Secant method
- (b) Cramers rule
- (c) Finite difference operators
- (d) Types of Error
- (e) Brents method
- (f) Linear programming