DIPLOMA VIEP COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination June, 2013

BICS-033 : NUMERICAL METHODS AND COMPUTATION

Time : $\mathbf{2}$ hours
Maximum Marks : 70
Note: Attempt any five questions. Question No. 1 is Compulsory. Calculator is allowed.

1. (a) If a number is rounded to k decimal places, then the absolute error is :

$$
7 \times 2=14
$$

(i) $\frac{1}{2} 10^{\mathrm{k}-1}$
(ii) $\frac{1}{2} 10^{-k}$
(iii) $\frac{1}{3} 10^{\mathrm{k}}$
(iv) $\frac{1}{4} 10^{-\mathrm{k}}$
(b) The Newton - Raphson method fails when:
(i) $\mathrm{f}^{\prime}(x)<0$
(ii) $\mathrm{f}^{\prime}(x)>0$
(iii) $\mathbf{f}^{\prime}(x)=0$
(iv) Never fails
(c) The relation between E, Δ and ∇ is :
(i) $\Delta=E . \nabla$
(ii) $E=\nabla-\Delta$
(iii) $\Delta=\frac{E}{\nabla}$
(iv) None of these
(d) Relation between E and Δ is:
(i) $\mathrm{E}=1+\Delta$ (ii) $\mathrm{E}=1-\Delta$
(iii) $\mathrm{E}=\Delta-1$ (iv) None of these
(e) Interpolatian is the technique of estimating the value of a function for any \qquad .
(f) Any solution to a L.P.P which satisfies the non-negativity restrictions of the problem is called its \qquad .
(g) Whenever Trapezoidal rule is applicable Simpson's $\frac{1}{3}$ rd rule can also be applied. (True/False).
2. (a) Find a root of the equation, $x-\cos x=0$, using bisection method correct to 3 decimal places.
(b) Using Regula-Falsi method find a root of 7 $2 x-\log x=6$ correct to 3 decimal places.
3. (a) Find a root of the equation $x^{3}+x^{2}+x+7=0$ 7 correct to 3 decimal places by Secant method.
(b) Find the positive root of $x^{4}-x=10$ correct 7 to three decimal places using Newton Raphson method.
4. (a) Solve by Gauss elimination method for the 7 following equations :
$2 x+2 y+z=12$
$3 x+2 y+2 z=8$
$5 x+10 y-8 z=10$
(b) Solve by Gauss-Seidal method, for the following equations :
$2 x+y+6 z=9$
$8 x+3 y+2 z=13$
$x+5 y+z=7$
5. (a) Construct Newton's forward interpolation 7 polynomial for the following data :

x	$:$	4	6	8	10
y	$:$	1	3	8	16

(b) Given $u_{1}=40, u_{3}=45, u_{5}=54$, find u_{2} and 7 u_{4}.
6. (a) Derive Lagrange's interpolation formula. 7
(b) Given the values 7

x	$:$	5	7	11	13	17
$f(x)$	$:$	150	392	1452	2366	5202

Evaluate f (a) using Lagrange's formula.
7. (a) Evaluate $\int_{0}^{5} \frac{\mathrm{~d} x}{4 x+5}$ using Simpson's 7
$1 / 3^{\text {rd }}$ rule by dividing the range into 10 equal parts. Deduce the value of $\log _{e} 5$.
(b) Using Runge-Kutta method, solve 7

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+y^{2}, y(0)=1, \text { compute } y(0.2) \\
& \text { taking } \mathrm{h}=0.1
\end{aligned}
$$

8. Explain any four of the following :
$3.5 \times 4=14$
(a) Secant method
(b) Cramers rule
(c) Finite difference operators
(d) Types of Error
(e) Brents method
(f) Linear programming
