DIPLOMA IN COMPUTER SCIENCE AND T TECHNOLOGY (DCSVI)/ADVANCED LEVEL CERTIFICATE COURSE IN CSE (ACCSVI)
 Term-End Examination

June, 2013

BICS-029 : ALGORITHMS AND LOGIC DESIGN

Time : $\mathbf{2}$ hours Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any four from the rest. Assume missing data, if any.

1. (a) The running time of an algorithm on a 2 particular input is the number of primitive operation or steps executed.
(i) True
(ii) False
(b) Recursive algorithm typically follows a2 divide and conquer approach.
(i) True
(ii) False
(c) Merge sort runs on θ ($\mathrm{n} \operatorname{logn}$) worst case time.
(i) True
(ii) False
(d) $\quad \theta(\mathrm{g}(\mathrm{n})=\{\mathrm{f}(\mathrm{n})$: there exist positive constants c and n_{o} such that $0 \leq \mathrm{cg}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{n}_{\mathrm{o}}$.
(i) True
(ii) False
(e) A function $f(n)$ is strictly increasing in $m<n$ 2 implies:
(i) $\mathrm{f}(\mathrm{m})<\mathrm{f}(\mathrm{n})$
(ii) $\quad \mathrm{f}(\mathrm{m})>\mathrm{f}(\mathrm{n})$
(iii) $f(m)==f(n) \quad$ (iv) none of above
(f) The symbol for decision making statement2 in a flowchart is :
(i) diamond box
(ii) circle
(iii) rectangle
(iv) parallelogram
(g) Which of the following statement is false? 2
(i) pseudo code is combination of algorithm and flowchart.
(ii) Algorithm is a pictorial representation of codes.
(iii) Binary search is possible for unsorted elements.
(iv) all the above
2. (a) What is efficiency of an algorithm? Is there 8 any relation with complexity ? Explain. best, average and worst case complexity with the help of examples.
(b) Write down the characteristic of a good algorithm.
3. (a) Write algorithm for Insertion sort and apply 8 this algorithm to sort following data : $\begin{array}{lllll}10 & 5 & 9 & 13 & 8\end{array}$
(b) When should the documentation of a program be started ? Explain.
4. (a) Consider the following :
(i) $\quad \mathrm{f}(\mathrm{n})=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$ show $\mathrm{f}(\mathrm{n})$ is $0\left(\mathrm{n}^{2}\right)$
(ii) $\mathrm{f}(\mathrm{n})=x^{8}+7 x^{7}-10 x^{5}-2 x^{4}+3 x^{2}-17$ show $\mathrm{f}(\mathrm{n})$ is $\Omega\left(x^{8}\right)$
(b) Write an algorithm to sort top 15 number of floppy disk in a hardware computer library using quick sort algorithm.
5. (a) What is optimization problem ? Is there any 8 relation with dynamic programming. Explain ?
(b) Design an algorithm to find the sum of the first n terms of the series
$f_{s}=0!+1!+2!+\ldots \ldots \ldots \ldots+n!,(n \geqslant 0)$
6. (a) Design a flow chart to implement recursive 6 binary search algorithm.
(b) In the following graph (Input vs time for 8 average case), mark the curves in relation to their algorithm viz.

Input (n)

- Insertion sort
- Quick sort
- Merge sort
- Bucket sort

7. (a) Apply divide and conquer strategy for 8 finding coin with maximum weight among collection of coins. Write pseodo code for it.
(b) Explain "Validation of an algorithm" with 6 suitable examples.
8. Write short notes on any four :
$3.5 \times 4=14$
(a) Fibonacci series
(b) Recursive algorithm and its demirts it any
(c) Sort by exchange
(d) Shell sort
(e) Program testing
(f) Bucket sort
