B.TECH. CIVIL ENGINEERING (BTCEVI)

Term-End Examination

June, 2013

BICEE-024 : ADVANCED ENVIRONMENTAL ENGINEERING

Time : 3 hours

Maximum Marks

70

Note: (i) All question carry equal marks.
(ii) Answer any seven question.
(iii) Assume any suitable data if missing.

1. Discuss the different zones of pollution in a river 10
stream with a neat sketch.
2. Describe in brief the principle and usage $\mathbf{1 0}$ application of dual media and multimedia filters of water treatment.
3. Explain the various instruments and techniques $\mathbf{1 0}$ used for noise measurement. Mention noise level for different areas.
4. Describe the principle, working and operation of $\mathbf{1 0}$ Trickling filter with neat sketches.
5. What is adsorption ? Discuss the principle $\mathbf{1 0}$ mechanism in adsorption of impurities by Activated Carbon. Mention the merits and demerits of activated carbon.
6. What is oxidation ditch ? Discuss its principle 10 and operation.
7. Discuss in brief the design consideration for $\mathbf{1 0}$ Extended Aeration. Explain the advantages of Extended Aeration over conventional secondary treatment.
8. Write short notes on:
$2 \times 5=10$
(a) Source, effects and control of sulphur dioxides
(b) Source, effects and control of Hydrocarbon
9. The sewage discharge of a town is $1.72 \mathrm{~m}^{3} / \mathrm{sec} .10$

The sewage is discharged into a river, whose minimum discharge is $7240 \mathrm{l} / \mathrm{sec}$. If the minimum dissolve oxygen to be maintained in the river is $4.4 \mathrm{mg} / 1$, determine the degree of sewage treatment to be done with the following data:
(a) Temperature of sewage $=$ temperature of river $\quad=20^{\circ} \mathrm{C}$
(b) Value of K_{1}
$=0.1, \mathrm{~K}_{2}=0.5$
(c) $\mathrm{BOD}_{5} @ 20^{\circ} \mathrm{C} \quad=225 \mathrm{mg} / \mathrm{L}$ (sewage)
(d) $\mathrm{BOD}_{5} @ 20^{\circ} \mathrm{C} \quad=1.2 \mathrm{mg} / \mathrm{L}$ (river)
(e) D.O. sewage $=0$
(f) D.O. at saturation in river $=80 \%$
(g) Saturation D.O. @ $20^{\circ} \mathrm{C}=9.17 \mathrm{mg} / \mathrm{L}$
10. Calculate the affluent BOD of a two stage trickling 10 filter with following data :

Flowrate
$=3.2 \mathrm{~m}^{3} / \mathrm{min}$
$B O D_{5}$
Volume of Filter I
Volume of Filter II
$=300 \mathrm{mg} / \mathrm{L}$

$$
=900 \mathrm{~m}^{3}
$$

Filter depth
$=900 \mathrm{~m}^{3}$

Recirculation ratio for both filter $=1.5$.
Use NRC equation.

