B.TECH. CIVIL ENGINEERING (BTCEVI)

Term-End Examination

June, 2013

BICEE-024 : ADVANCED ENVIRONMENTAL ENGINEERING

Time: 3 hours		Maximum Marks : 70	
Note	: (i) (ii) (iii)	All question carry equal marks. Answer any seven question. Assume any suitable data if missing.	
1.		ne different zones of pollution in a river ith a neat sketch.	10
2.	applicatio	in brief the principle and usage on of dual media and multimedia filters treatment.	10
3.		ne various instruments and techniques noise measurement. Mention noise level ent areas.	10
4.		the principle, working and operation of filter with neat sketches.	10

- 5. What is adsorption? Discuss the principle 10 mechanism in adsorption of impurities by Activated Carbon. Mention the merits and demerits of activated carbon.
- 6. What is oxidation ditch? Discuss its principle 10 and operation.
- 7. Discuss in brief the design consideration for Extended Aeration. Explain the advantages of Extended Aeration over conventional secondary treatment.
- 8. Write short notes on:

2x5 = 10

- (a) Source, effects and control of sulphur dioxides
- (b) Source, effects and control of Hydrocarbon
- 9. The sewage discharge of a town is 1.72 m³/sec.

 The sewage is discharged into a river, whose minimum discharge is 7240 l/sec. If the minimum dissolve oxygen to be maintained in the river is 4.4 mg/l, determine the degree of sewage treatment to be done with the following data:
 - (a) Temperature of sewage = temperature of river = 20° C
 - (b) Value of $K_1 = 0.1$, $K_2 = 0.5$
 - (c) BOD_5 @ $20^{\circ}C$ = 225 mg/L (sewage)

(d) $BOD_5 @ 20^{\circ}C = 1.2 \text{ mg/L (river)}$

(e) D.O. sewage = 0

(f) D.O. at saturation in river = 80%

(g) Saturation D.O. @ 20° C = 9.17 mg/L

10. Calculate the affluent BOD of a two stage trickling **10** filter with following data:

Flowrate = $3.2 \text{ m}^3/\text{min}$

 $BOD_5 = 300 \text{ mg/L}$

Volume of Filter I $= 900 \text{ m}^3$

Volume of Filter II $= 900 \text{ m}^3$

Filter depth = 2m

Recirculation ratio for both filter = 1.5.

Use NRC equation.