B.TECH. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination
June, 2013

BICEE-023 : TRAFFIC ENGINEERING

Time: $\mathbf{3}$ hours
Maximum Marks : 70
Note : Attempt any five questions. All questions carry equal marks. Scientific calculator is permitted.

1. (a) Define the Traffic Engineering. What are 7 the scopes of traffic engineering? Explain briefly.
(b) Discuss the various factors which affect the road user characteristics and their effects in traffic performance.
2. (a) What are the various applications of 4 O and D studies?
(b) Discuss any two methods for collecting the 10 O and D data.
3. (a) What are the different causes of traffic 4 accidents?
(b) Explain in detail various measures to $\mathbf{1 0}$ prevent accidents.
4. (a) Discuss the common types of pavement markings with their uses.
(b) "By introducing channelizing islands both7 the major and minor conflict are reduced" comment with required neat sketch.
5. What is a traffic rotary ? What are its advantages14 and limitations? Explain briefly the various design factors that are to be considered in rotary intersection design.
6. (a) Calculate the spacing between lighting units to produce average $\mathrm{Lux}=6.0$ for following conditions.
(i) Street lighting system with street width - 15 m
(ii) Mounting height -7.5 m
(iii) Lamp size - 6000 lumen
(iv) Luminaire type - II
(v) Coefficient of utilization for ratio value 2 is 0.44
Maintenance factor $=0.8$

(b) Write the factors to be considered for the design of road lighting.

[^0]A and B are 38 and 20 m respectively before collision. The skid distances after collision are 15 and 36 m respectively. If the weights of vehicle B and A are 6.0 and 4.4 tonnes, calculate the original speeds of the vehicles. The average skid resistance of the pavement is found to be 0.55 .
8. Write short note on any four of the following :
(a) PCU
$3.5 \times 4=14$
(b) Informatory signs
(c) Grade separation
(d) Kerb parking
(e) Traffic flow at intersection
(f) Practical capacity

[^0]: 7. Two vehicles A and B approaching at right angles, 14 A from West and B from South, collide with each other. After the collision, vehicle A skids in a direction 50° North of West and vehicle B, 60° East of North. The initial skid distances of the vehicles
