F 🛰

0052

BICEE-021

B.TECH. CIVIL ENGINEERING (BTCLEVI) Term-End Examination June, 2013 BICEE-021 : COMPUTATIONAL METHODS IN STRUCTURAL ENGINEERING

Time : 3	3 hours	Maximum Marks : 70
Note :	(i)	Answer any five questions.
	(<i>ii</i>)	All questions c arry equal mark s.
	(iii)	Use of scientific calculator is permitted.

- 1. (a) Locate the stationary points of 7 $f(x) = 12x^5 - 45x^4 + 40x^3 + 5$ and find out if the function is convex, concave or neither at the points of optima based on testing rules.
 - (b) Discuss the properties of a concave and 7 convex function.
- 2. Minimize $f = x_1^2 + x_2^2 + 60x_1$ subject to the 14 constraints $g_1 = x_1 - 80 \ge 0$ $g_2 = x_1 + x_2 - 120 \ge 0$ using KUHN - TUCKER conditions.

BICEE-021

3. Transform the general form of a linear **14** programming problem given below to its standard form.

Minimize Z = 6x + 5ySubject to $2x - 3y \le 5$ $x + 3y \le 11$ $4x + y \le 15$ $x, y \ge 0$

- 4. Solve the problem by Integer linear programming 14 Maximize $Z = 3x_1 + x_2$ Subject to $2x_1 - x_2 \le 6$ $3x_1 + 9x_2 \le 45$ $x_1, x_2 \ge 0$ x_1, x_2 are integers.
- 5. Solve the following set of equation by Gauss 14 elimination method.

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16

- 6. Define the following (any two) : 7x2=14
 - (a) Isoparametric elements
 - (b) Shape function
 - (c) Constant strain triangle
 - (d) Finite element method

BICEE-021

7. Analyse the bent frame by force method.

14

BICEE-021