B.TECH. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination
June, 2013

BICEE-021 : COMPUTATIONAL METHODS IN STRUCTURAL ENGINEERING

Time: $\mathbf{3}$ hours
Maximum Marks : 70
Note : (i) Answer any five questions.
(ii) All questions carry equal marks.
(iii) Use of scientific calculator is permitted.

1. (a) Locate the stationary points of 7 $f(x)=12 x^{5}-45 x^{4}+40 x^{3}+5$ and find out if the function is convex, concave or neither at the points of optima based on testing rules.
(b) Discuss the properties of a concave and 7 convex function.
2. Minimize $f=x_{1}^{2}+x_{2}^{2}+60 x_{1}$ subject to the 14 constraints

$$
\begin{aligned}
& \mathrm{g}_{1}=x_{1}-80 \geqslant 0 \\
& \mathrm{~g}_{2}=x_{1}+x_{2}-120 \geqslant 0 \\
& \text { using KUHN - TUCKER conditions. }
\end{aligned}
$$

3. Transform the general form of a linear 14 programming problem given below to its standard form.
Minimize $Z=6 x+5 y$
Subject to $2 x-3 y \leq 5$

$$
\begin{aligned}
& x+3 y \leq 11 \\
& 4 x+y \leq 15 \\
& x, y \geqslant 0
\end{aligned}
$$

4. Solve the problem by Integer linear programming

Maximize $Z=3 x_{1}+x_{2}$
Subject to $2 x_{1}-x_{2} \leq 6$

$$
\begin{aligned}
& 3 x_{1}+9 x_{2} \leq 45 \\
& x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

x_{1}, x_{2} are integers.
5. Solve the following set of equation by Gauss 14 elimination method.

$$
\begin{aligned}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{aligned}
$$

6. Define the following (any two) :
(a) Isoparametric elements
(b) Shape function
(c) Constant strain triangle
(d) Finite element method
7. Analyse the bent frame by force method.

EI is constant

