T' ... **1**

B.TECH. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

00594

June, 2013

BICEE-020 : RELIABILITY AND OPTIMIZATION OF STRUCTURES

Time : 3	o nours	Maximum Marks : 70
Note :	(i)	All answers to be written in English only.
	(ii)	Attempt any seven questions out of ten.
	(iii)	Non programmable calculators are allowed.

- (a) Define independent and mutually exclusive 4 events. Can two events be mutually exclusive and independent simultaneously? Support your answer with an example.
 - (b) An engineer applies for a job in two firms 6 X and Y. He estimates that the probability of his being selected in firm X is 0.7, and being rejected at Y is 0.5, and the probability of at least one of his applications being rejected is 0.6. What is the probability that he will be selected in one of the firm ?
- 2. (a) State Baye's theorem and express in 3
 Mathematical form. Why is this theorem known as posteriori probability ?

BICEE-020

P.T.O.

(b) In a bolt factory, machines A, B, C manufacture respectively 25%, 35% and 40% of the total output. Of their output, 5%, 4% and 2% respectively are known to be defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by : 7

- (i) Machine A
- (ii) Machine C
- (a) Write down Mathematical expression of 4 probability function of Binomial distribution. State various condition under which Binomial distribution is valid.
 - (b) It is known from the past experience that in a certain plant, there are on the average 4 industrial accidents per month. Find the probability that in a given year there will be less than 4 accidents. Assume occurrence of accidents follows poission distribution.
- 4. (a) Explain design variables and design 3 constraints in respect of optimization problem with suitable example.
 - (b) A scaffolding system consists of three beams 7 and six ropes as shown in the figure.

BICEE-020

Each of the top ropes A and B can carry a load of W_1 , while each of the middle ropes C and D can carry a load of W_2 , and each of the bottom ropes E and F can carry a load of W_3 . If the loads acting on beams 1, 2 and 3 are x_1 , x_2 and x_3 respectively, as shown in the figure, formulate the problem finding the maximum load that can be supported by the system. Assume that the weights of the beam 1, 2 and 3 are W_1 , W_2 and W_3 respectively, and the weights of the ropes are negligible.

5. A firm manufactures two types of products 10 A and B and sells them at a profit of Rs.2 on Type A and Rs. 3 on Type B. Each product is processed on two machines G and H. Type A requires one minute of processing time on G and two minutes on H; Type B requires one minute on G and one minute on H. The machine G is available for not more than 6 hour 40 minutes while machine is available for 10 hours during any working day. Formulate the problem as linear programming problem (LPP)..

BICEE-020

- What do you mean by 'local minimum', (a) 6. 'local maximum' and 'global or absolute minimum' in a single variable optimization problem ?
 - Prove that, if a function f(x) is defined in (b) the interval of $a \le x \le b$ and has a relative minimum at $x = x^*$, where a < x^* < b, and if the derivative d f(x)/dx = f'(x) exists as a finite number at $x = x^*$, then $f'(x^*) = 0$.
- Express the scalar (standard) form of linear 7. 2 (a) programming problem.
 - Solve the following problem using Simplex 8 (b) method maximize $Z = x_1 + 2x_2 + x_3$ Subject to,

 $2x_1 + x_2 - x_3 \le 2$ $-2x_1 + x_2 - 5x_3 \ge -6$ $4x_1 + x_2 + x_3 \le 6$ $x_1, x_2, x_3 \ge 0$

- State the necessary and sufficient conditions 8. (a) 3 for the unconstrained minimum of a function.
 - Why is the steepest descent direction not 4 (b) efficient in practices although the directions used are the best directions ?
 - Explain 'Univariate Method' in brief. 3 (c)

BICEE-020

7

3

- 9. (a) What do you understand by conjugate 2 gradient method ?
 - (b) Using conjugate gradient method solve the 8 following problem :
 minimize

$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$

Starting from the point $X_1 = \begin{cases} 0 \\ 0 \end{cases}$

- 10. (a) Define and describe the structural reliability 3 with suitable illustration.
 - (b) Describe any two methods of computing 3 structural reliability in brief.
 - (c) Compute the reliability of the system for the 4 connection given in the following figure, if the reliability of A, B, C an D are 0.95, 0.99, 0.90 and 0.96 respectively.

BICEE-020