Diploma in Civil Engineering (DCLE (G)) Diploma in Mechanical Engineering (DME) DCLEVI/DMEVI/DELVI/DECVI/DCSVI/ ACCLEVI/ACMEVI/ACELVI/ACECVI/ACCSVI Term-End Examination 03942 June, 2013

BET-022 : STRENGTH OF MATERIALS

Time: $\mathbf{2}$ hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any four questions from the remaining questions. Assume suitable data wherever necessary and mention it clearly. Use of calculator is allowed.

1. (a) Volumetric strain in a bar subjected to an axial load (W) is equal to :
(i)
$e(1+2 \mu)$
(ii) $\mathrm{e}(1-2 \mu)$
(iii) $e(2-\mu)$
(iv) $e(1-3 \mu)$

Where $\mathrm{e}=$ linear strain and $\mu=$ Poission's's ratio.
(b) At a point in a strained material carrying two unequal unlike principal stresses $p_{1} \& p_{2}\left(p_{1}>p_{2}\right)$ the maximum shear stress is given by :
(i) $\frac{\mathrm{p}_{1}}{2}$
(ii) $\frac{\mathrm{p}_{2}}{2}$
(iii) $\frac{\left(p_{1}-p_{2}\right)}{2}$
(iv) $\frac{\left(p_{1}+p_{2}\right)}{2}$
P.T.O.
(c) The section modulus of a rectangular section having width (b) and depth (d) is :
(i) $\frac{\mathrm{bd}}{2}$
(ii) $\frac{\mathrm{bd}^{2}}{6}$
(iii) $\frac{\mathrm{bd}^{3}}{6}$
(iv) $\frac{b^{2} d^{2}}{6}$
(d) When a section of a rectangular beam is subjected to a shearing force, the ratio of maximum shear stress to average shear stress is
(i) 2.0
(ii) 1.75
(iii) 1.5
(iv) 1.25 .
(e) A beam of length (l) is simply supported over its both ends. It is carrying a uniformly distributed load of intensity ' w ' unit length. Then its slope at ends will be :
(i) $\frac{\mathrm{w} l^{3}}{24 \mathrm{EI}}$
(ii) $\frac{\mathrm{w} l^{4}}{24 \mathrm{EI}}$
(iii) $\frac{5 \mathrm{w} l^{2}}{24 \mathrm{EI}}$
(iv) $\frac{5 \mathrm{w} l^{3}}{24 \mathrm{EI}}$
(f) If a shaft of diameter d is subjected to torque T , the maximum shear stress is :
(i) $\frac{32 \mathrm{~T}}{\pi \mathrm{~d}^{3}}$
(ii) $\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{2}}$
(iii) $\frac{16 \mathrm{~T}}{\pi d^{3}}$
(iv) $\frac{64 \mathrm{~T}}{\pi d^{4}}$
(g) If the span of a cantilever beam loaded with a uniformly distributed load is doubled and the intensity of the load is reduced to one-fourth of its value, the deflection at free end:
(i) gets double
(ii) remains same
(iii) becomes four times
(iv) None of the above.
2. A round tapered alloy bar 4.0 m long is subjected 14 to load as shown in figure. Find the change in the length of the bar. Take $E=120 \mathrm{GPa}$.

Figure - 1
3. A cantilever beam of 8 m length is subjected to point loads of $10 \mathrm{kN}, 15 \mathrm{kN}, 25 \mathrm{kN}$ and 20 kN at distances of $2 \mathrm{~m}, 4 \mathrm{~m}, 6 \mathrm{~m}$ and 8 m respectively from the fixed end. Draw the S.F and B.M. Diagram for the beam shown in figure 2.

4. An unequal I-section, shown in figure 3, is used as a beam. The beam section is subjected to a bending moment of 2.5 kNm at its neutral axis.
Find the maximum stress developed in the beam.

Figure-3
5. An I-section has an overall depth of 240 mm with 14 horizontal flanges, each measuring $120 \mathrm{~mm} \times 20 \mathrm{~mm}$ and a vertical web $200 \mathrm{~mm} \times 20 \mathrm{~mm}$. It is subjected to a vertical shear force of 200 kN . Find the max. Shear stress \& its position. Draw the shear stress distribution diagram for the section.
6. (a) A simply supported beam of 4 m span is carrying a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ over the entire span. Find the maximum slope and deflection of the beam. Take $\mathrm{EI}=80 \times 10^{9} \mathrm{~N}-\mathrm{mm}^{2}$ for the beam.
(b) A cantilever beam, 120 mm wide and 7 150 mm deep, carries a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ intensity over its span of 2.4 meters. Find the slope and deflection of the beam of its free end. Take $\mathrm{E}=180 \mathrm{GPa}$.
7. A solid steel shaft of 2 m length is to transmit 14 50 kW at 150 rpm . If the shear stress in the shaft material is not to exceed 50 MPa and maximum allowable twist in the shaft is 1°, Calculate the required shaft diameter. Take $\mathrm{G}=80 \mathrm{GPa}$.
8. An I-section joist shown in figure 4 , is 6 m long and is used as a strut with both ends fixed. What is Euler's cripling load for the column ? Take Young's modulus for joist as 200 GPa .

Figure - 4

