DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) /DIPLOMA IN MECHANIC.AL ENGINEERING (DME)
 DCLEVI/DMEVI/DELVI/DECVI/DCSVI/ ACCLEVI/ ACMEVI/ACELVI/ACECVI/ACCSVI

Term-End Examination

June, 2013

BET-011 ; MATHEMATICS-I

Time : $\mathbf{2}$ hours
Maximum Marks: 70
Note: Question No. 1 is compulsory. Attempt any four more questions out of the remaining. Use of scientific calculator is permitted.

1. Answer any seven of the following :
(a) Find the unit vector along $\vec{i}+\vec{j}$
(b) In flow chart what is the meaning of the following shape
\bigcirc circle.
(c) Express $5 \sqrt[3]{4}$ as a pure surd.
(d) What is the characteristic of the logrithms of 0.3741 .
(e) Which term of the sequence
$-3,-7,-11,-15, \ldots \ldots \ldots$. is -403 .
(f) Find the co - efficient of x^{10} in the binomial

$$
\text { expansion of }\left(2 x^{2}-\frac{3}{x}\right)^{11}
$$

(g) Find the value of

$$
\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)
$$

(h) Find the equation of a line passing through the points $(3,4)$ and $(2,-1)$
(i) Find the eccentricity of the hyperbola $3 x^{2}-y^{2}=4$.
(j) Find the equation of a circle passing through the origin and making intercepts 4,5 respectively on the co-ordinates axis.
2. (a) Simplify :

$$
(3 \sqrt{5}-5 \sqrt{2})(4 \sqrt{5}+3 \sqrt{2})
$$

(b) If $\log _{10} 2=.30103$ evaluate $\log _{10}\left(\frac{1000}{256}\right)$.
(c) Find the roots of the equation:

$$
\left(x^{2}-5 x\right)^{2}-30\left(x^{2}-5 x\right)-216=0
$$

3. (a) If the $3^{\text {rd }}$ term of an A.P is 18 and the seventh term is 30 , Find the series.
$4,5,5$
(b) Find the sum of 50 terms of the sequence 7, 7.7, 7.77, 7.777, _
(c) Prove that if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P then $\frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$ are also in A.P.
4. (a) Using Binomial theorem, Find the value of (99) ${ }^{4}$.

5,4,5
(b) Find the value of $\tan 22^{\circ} .30^{\prime}$
(c) If A, B, C are angles of a triangle,

Prove that :

$$
\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}+\tan \frac{A}{2} \tan \frac{B}{2}=1
$$

5. (a) From the top of a cliff 60 m high, the angle of depression of the top and bottom of a tower are observed to be 30° and 60° respectively. Find the height of the tower. $6,4,4$
(b) Prove that:
$\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=2 \tan ^{-1} x, x \geq 0$
(c) Find the equation of a line perpendicular to the line $3 x-4 y+7=0$ and passing through the point $(-3,2)$
6. (a) Find the equation of a circle which passes through the points $(2,-2)$ and $(3,4)$ and has its centre on the line $2 x+2 y=7$. $5,4,5$
(b) Find the vertex, focus and directrix of the parabola.
$4 y^{2}+12 x-12 y+39=0$
(c) Find the equation of an ellipse whose focus is $(-1,1)$, directrix is the line $x-y+3=0$ and eccentricity is $\frac{1}{2}$.
7. (a) Find a unit vector perpendicular to both the

$$
\text { vectors } \vec{a}=2 i+j-k \text { and } \vec{b}=i-j+2 k \quad 5,4,5
$$

(b) Show that the vectors

$$
\vec{a}=3 i-2 j+k, \vec{b}=i-3 j+5 k, \vec{c}=2 i+j-4 k
$$

form a right angled triangle.
(c) Prove that the line joining the mid points of two sides of a triangle is parallel to the third.

