B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination
June, 2013

BIME-006 : THERMOFLUID ENGINEERING

Time : 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks.

1. (a) Explain the types of flow: 7
(i) Steady and Unsteady flow
(ii) Stream line and Streak line flow
(iii) Uniform and non-uniform
(b) A 30 cm diameter pipe, conveying water, 7 branches into two pipes of diameter 20 cm and 15 cm respectively. If the average velocity in 30 cm pipe is $2.5 \mathrm{~m} / \mathrm{sec}$, find the discharge in this pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20 cm diameter pipe is $2 \mathrm{~m} / \mathrm{sec}$.
2. (a) What is Mach number ? Find the sonic 7 velocity for crude oil of specific gravity 0.8 and bulk modulus $153036 \mathrm{~N} / \mathrm{cm}^{2}$.
(b) What is momentum equation ? Derive the 7 expression for the velocity of sound wave in a fluid.
3. (a) Derive the Darcy-Weisbach equation used for finding loss of head due to friction in pipes.
(b) Explain the main components of KAPLAN 7 turbine. Briefly explain its working.
4. (a) Derive Euler's equation of motion. What are 7 the assumptions made in the derivation of Bernoulli's equation?
(b) Experiments were conducted in a wind tunnel with a wind speed of $50 \mathrm{~km} /$ hour on a flat plate of size 2 m long and 1 m wide. The density of air is $1.15 \mathrm{~kg} / \mathrm{m}^{3}$. The co-efficient of lift and drag are 0.75 and 0.15 . Determine :
(i) the lift force
(ii) the drag force
(iii) the resultant force
(iv) the direction of resultant force
5. (a) Explain the boundary layer theory along 7 with boundary layer thickness and displacement thickness.
(b) A Pelton wheel is to be designed for a head 7 of 60 m when running at 200 rpm . The pelton wheel develops 95.6475 kw shaft power. The velocity of bucket $=0.45$ times the velocity of the jet, overall efficiency $=0.85$ and co-efficient of velocity is equal to 0.98 . Find diameter of jet, diameter, width and depth of bucket on the wheel.
6. (a) Explain the choked flow occurring in a nozzle.
(b) The hub diameter of a kaplan turbine, working under a head of 12 m , is 0.35 times the diameter of the runner. The turbine is running at 100 r.p.m. If the vane angle of the extreme edge of the runner at outlet is 15° and flow ratio is 0.6 . Find
(i) Diameter of the runner.
(ii) Diameter of the boss.
(iii) Discharge through the runner.

The velocity of whirl at outlet is given as zero.
7. Write a short note on any three :
(a) Cavitation
(b) Fanno line Flow
(c) Lagrangian and Eulerian Method
(d) Governing of Turbine

