B.Tech. Mechanical Engineering / B.Tech Civil Engineering (BTMEVI/BTCLEVI)

Term-End Examination

June, 2013

BIME-004 : FLUID MECHANICS

Tine: 3 hours
Maximum Marks : 70
Note: Attempt all five questions. Each question carry equal marks. Answer questions in English only.

1. Attempt any two questions:
(a) Explain the terms:
(i) Dynamic Viscosity
(ii) Kinematic Viscosity. Give their dimensions
(iii) Differentiate between absolute and gauge pressure
(b) Define pressure. State and prove the Pascal's law.
(c) A rectangular pontoon is 5 m long, 3 m wide and 1.20 m high. The depth of immersion of the pontoon is .80 m in sea water if the centre of gravity is .6 m above the bottom of the pontoon. Determine the meta - centric height. The density for sea water $=$ $1025 \mathrm{~kg} / \mathrm{m}^{3}$.
P.T.O.
2. Attempt any two questions: $2 \times 7=14$
(a) Explain the terms:
(i) Path line (ii) Streak line
(iii) Stream line (iv) Stream tube
(b) Define the equation of continuity. Obtain an expression for continuity equation for a three dimensional flow.
(c) The velocity vector in a fluid flow is given

$$
\mathrm{V}=4 x^{3} i-10 x^{2} y j+2 \mathrm{t} k
$$

Find the acceleration and velocity of a fluid particle at $(2,1,3)$ at time $t=1$.
3. Attempt any two questions. $2 \times 7=14$
(a) What is Fuler's equation of motion? Derive it, how will you obtain Bernoulli's equation from it?
(b) What is pitol tube? How will you determine the velocity at any point with the help of pitol tube?
(c) The head of water over a rectangular notch is 900 mm . The discharge is 300 litres $/ \mathrm{s}$. Find the length of the notch, when $C_{D}=.62$
4. Attempt any two questions:
(a) What do you mean by Dimensionless number ? Explain any two Dimensionless numbers.
(b) What is meant by geometric, kinematic and dynamic similarities? Are these similarities truly attainable?
(c) The variables controlling the motion of a floating vessel through water are the drag force F, the speed V, the length L, the density P and the dynamic viscosity μ of water and acceleration due to gravity g. Derive an expression for F by dimension of analysis.
5. Write short notes on the following : 14
(a) Venturimeter
(b) Water hammer
(c) Syphon

