No. of Printed Pages : 4
BME-017
BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) BTCLEVI/BTMEVI/BTECVI/BTELVI/BTCSVI

Term-End Examination June, 2013

BME-017 : STRENGTH OF MATERIALS

Time: $\mathbf{3}$ hours
Maximum Marks : 70
Note : Attempt any seven questions only. All question carry equal marks. Assume suitable missing data, if any.

1. A steel bar is placed between two copper bars each $\mathbf{1 0}$ having the same area and length as the steel bar at $15^{\circ} \mathrm{C}$. At this stage they are rigidly connected together at both the ends. When the temperature is raised to $315^{\circ} \mathrm{C}$, the length of bars increased by 1.5 mm . Determine the original length and final stresses in the bars. Take $\mathrm{E}_{\mathrm{s}}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, $\mathrm{E}_{\mathrm{c}}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \alpha_{\mathrm{s}}=0.000012$ per ${ }^{\circ} \mathrm{C}$ and $\alpha_{c}=0.0000175$ per ${ }^{\circ} \mathrm{C}$.
2. A bar $A B C D, 950 \mathrm{~mm}$ long is made up of three 10 parts $A B, B C$ and $C D$ of lengths $250 \mathrm{~mm}, 450 \mathrm{~mm}$ and 250 mm respectively. $A B$ and $C D$ are cylindrical having diameters 25 mm and 15 mm respectively. The rod $B C$ has square cross-section $30 \mathrm{~mm} \times 30 \mathrm{~mm}$. The rod is subjected to pull of 26000 N. Find
(a) the stresses in three parts of the rod.
(b) the extension of the rod. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
3. A steel specimen $150 \mathrm{~mm}^{2}$ in cross-section
stretches by 0.5 mm over a 50 mm gauge length under an axial load of 30 kN . Calculate the strain energy stored in the specimen at this stage. If the load at the elastic limit for the specimen is 50 kN . Determine the elongation at elastic limit and the proof resilience.
4. A rectangular block of material is subjected to an tensile stresses of $100 \mathrm{~N} / \mathrm{mm}^{2}$ on one plane and a tensile of $50 \mathrm{~N} / \mathrm{mm}^{2}$ on a plane at right angles, together with shear stresses of $60 \mathrm{~N} / \mathrm{mm}^{2}$ on the same planes. Determine :
(a) the direction of principle planes
(b) the magnitude of principle stresses
(c) the magnitude of the greatest shear stresses.
5. Draw the shear force and bending moment $\mathbf{1 0}$ diagram for the beam shown in figure below.

6. A rolled steel joist of I - section has the following 10
dimensions :

Flange : 250 mm wide and 24 mm thick
Web : 12 mm thick
Overall depth : 600 mm
If this beam carries a uniformly distributed load of $50 \mathrm{kN} /$ meter run on a span of 8 m . Calculate the maximum stress produced due to bending.

7. A solid circular shaft transmits 75 kW at 200 rpm .

Calculate the shaft diameter if the twist in the shaft is not exceed 1° in 2 meters of shaft and the shearing stress is limited to $50 \mathrm{~N} / \mathrm{mm}^{2}$
Take $\mathrm{C}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
8. Determine the thickness of metal necessary for a 10 steel cylindrical shell of internal diameter 150 mm to width-stand an internal pressure of $50 \mathrm{~N} / \mathrm{mm}^{2}$. The maximum hoop stress in the section is not to exceed $150 \mathrm{~N} / \mathrm{mm}^{2}$.
9. A cast iron beam 40 mm wide and 80 mm deep is $\mathbf{1 0}$ simply supported on a span of 1.2 m . The beam carries a point load of 15 kN at the centre. Determine the deflection at the centre. Take $\mathrm{E}=108000 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$.
10. A closed coiled helical spring is to have a stiffness of $1 \mathrm{~N} / \mathrm{mm}$ of compression under a maximum load of 45 N and a maximum shearing stress of $126 \mathrm{~N} / \mathrm{mm}^{2}$. The solid length of the spring (when the coils are touching) is to be 45 mm . Determine the diameter of the wire, the mean diameter of the coils and the number of coils required. Modulus of rigidity $C=4.2 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.

