BACHELOR OF TECHNOLOGY IN

 MECHANICAL ENGINEERING (COMPUTER INTEGRATEDMANUFACTURING) 00504

BTCLEVI/BTMEVI/BTECVI/BTELVI/BTCSVI

Term-End Examination
June, 2013

BME-009 : COMPUTER PROGRAMMING AND APPLICATION

Time : 3 hours
 Maximum Marks : 70

Note : Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Compute the roots of the following equation $x^{4}-2 x^{3}+4 x^{2}+6 x-21=0$, given that the sum of two of its roots is zero.
(b) Solve the following system of linear simultaneous algebraic equations by Crout's method

$$
\begin{aligned}
& 4 x_{1}+3 x_{2}+6 x_{3}=13 \\
& 2 x_{1}-4 x_{2}+x_{3}=8 \\
& 3 x_{1}-2 x_{2}+6 x_{3}=17
\end{aligned}
$$

2. (a) Find the real root of the equation $\mathrm{e}^{x}-3 x=0$ by the method of iteration, correct to three decimal places.
(b) Using Bisection method, compute one root of $x^{3}-3 x-5=0$ correct to two decimal places, in the interval $[2,3]$
3. (a) Using Newton's interpolation formula compute $f(0.5)$ for the data given as : $\quad 2 \times 7=14$

$x:$	0	1	2	3	4
$y:$	1.000	2.718	7.389	20.086	54.598

(b) Solve the following simultaneous equation by Gauss - Seidel method.
$6 x-3 y+z=11$
$2 x+y-8 z=-15$
$x-7 y+z=10$
4. (a) Apply Newton - Raphson method to find an approximate root, correct to three decimal places of the equation $x^{3}-6 x+4=0$ which lies near $x=0.5$. $2 \times 7=14$
(b) Use Runge - Kutta method to approximate y, when $x=0.1$ and $x=0.2$ given that $x=0$
when $y=1$ and $\frac{d y}{d x}=x+y$.
5. (a) Write the output of the following program:
\#
int func (int \& x, int $y=10$)
\{
if $(x \% y==0)$ return $++x$; else return $y--$;
\}
void main ()
1

$$
\begin{aligned}
& \quad \text { int } \mathrm{p}=20, \mathrm{q}=23 \text {; } \\
& \mathrm{q}=\text { func }(\mathrm{p}, \mathrm{q}) ; \\
& \text { cout } \ll \mathrm{p} \ll \mathrm{q} \ll \text { endl ; } \\
& \mathrm{p}=\text { func }(\mathrm{q}) ; \\
& \text { cout } \ll \mathrm{p} \ll \mathrm{q} \ll \text { endl ; } \\
& \mathrm{q}=\text { func }(\mathrm{p}) \text {; } \\
& \text { cout } \ll \mathrm{p} \ll \mathrm{q} \ll \text { endl ; } \\
& \text { \}}
\end{aligned}
$$

(b) Given three numbers A, B, and C, write a $\mathrm{C}++$ programme to write their values in an ascending order. For example if $\mathrm{A}=12$, $B=10$, and $C=15$, your programme should print out:

Smallest number $=10$; Next higher number $=12$; Highest number $=15$.
6. (a) Write a $C++$ programme to sum the

$$
\text { sequence } \quad 2 \times 7=14
$$

$$
\text { Sum }=x-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}
$$

(b) Give the out put of the following programme \# include < iostream .h> Struct Pixel
\{ int C, R;
\};
void Display (Pixel P)
\{
Cout \ll "Col" \ll P. $\mathrm{C} \ll{ }^{\prime \prime}$ Row" $^{2} \ll \mathrm{P} . \mathrm{R} \ll$ endl;
1
void main ()
$\{$ Pixel $X=\{40,50\} Y, Z$;
$Z=X$
$X . C+=10$;
$Y=Z$;
$Y . C+=10$
$Y . R+=20 ;$
Z.C- = 15 ;

Display (X) ;
Display (Y);
Display (Z) ;
\}
7. (a) Differentiate between a default constructor and copy constructor, giving suitable examples for each. $2 \times 7=14$
(b) Write a C++ programme to calculate and print roots of a quadratic equation.
$a x^{2}+b x+c=0$.
8. (a) Write $\mathrm{C}++$ programme to input a number. If the number n is odd and positive, print its square root otherwise print n^{5}. $2 \times 7=14$
(b) Write a C++ programme to calculate the function
$f(x)=\frac{x^{2}+1.5 x+5}{x-3}$
for $x=-10$ to 10
(x should take values $-10,-8,-6 \ldots, 6,8,10$)
Also print the output.

