B.Tech. IN ELECTRICAL ENGINEERING

Term-End Examination
June, 2013

BIEE-022 : POWER SYSTEM

Time : 3 hours
Maximum Marks : 70
Note: Attempt any five questions in all. All questions carry equal marks.

1. (a) What do you understand by per unit system ? State the advantage of per unit system.
(b) What do you understand by a short 8 circuit? Discuss the possible causes of short circuit in power system.
2. An unloaded synchronous generator, whose 14 neutral is grounded through a reactance x_{n}, has balanced emfs and sequence reactance x_{1}, x_{2} and x_{0} such that $x_{1}=x_{2}>x_{0}$
(a) Draw the sequence networks of the generator as seen from the terminals.
(b) Derive expression for fault current for a solid line to ground fault on phase a.
(c) Show that, if the neutral grounded solidly, the LG fault current would be more than that of three - phase fault current.
3. (a) What is idea behind performing load flow analysis of any given power system?
(b) Discuss the procedure for representing a tap 8 changing transformer in the formation of system matrix [$Y_{\text {Bus }}$] for load flow study.
4. (a) Deduce the condition of equal area criterion 6 for transient stability analysis.
(b) Explain the point by point solution 8 technique of swing equation for transient stability study.
5. (a) Discuss the behaviour of a travelling wave 8 when it reaches:
(i) Short circuited end of transmission line
(ii) Line terminated with an inductance.
(b) What are the factors that affects transient 6 stability ? Explain in detail.
6. Explain in detail load flow solution for power $\mathbf{1 4}$ system using :
(a) Gauss siedel method
(b) Approximation to N-R method
7. Write short notes on any two of the following:

$$
2 \times 7=14
$$

(a) Wave equation for uniform transmission line.
(b) Factors affecting steady state and transient stability.
(c) Formation of Zbus using singular transformation and algorithm

