B.TECH. IN ELECTRICAL ENGINEERING (BTELVI)

01867

Term-End Examination
June, 2013

BIEE-009 : APPLIED ELECTROMAGNETICS

Time : $\mathbf{3}$ hours

Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks.

1. Derive the expression for electric field intensity at 10 any point due to a line charge with uniform line charge density $\rho_{\mathrm{L}} \mathrm{c} / \mathrm{m}$ on the infinitely long z - axis.
2. (a) Express the field $\overline{\mathrm{F}}=2 x y z \overline{\mathrm{a}}_{x} \quad 7+3$
$-5(x+y+z) \overline{\mathbf{a}}_{z}$ in cylindrical coordinates (variables and components).
(b) Find $|\overline{\mathrm{F}}|$ at $\mathrm{p}\left(\rho=2, \phi=60^{\circ}, z=3\right)$
3. (a) Derive the expression for potential 5 difference $V_{A B}$ in the field of a point charge located at origin.
(b) A point charge of 6 nC is located at origin $3+2$ in free space. Find V_{P} if point p is located at $\mathrm{p}(0.2,-0.4,0.4)$ and (i) $\mathrm{v}=0$ at infinity (ii) $\mathrm{v}=0$ at $(1,0,0)$
4. (a) Derive the continuity equation for current. 5
(b) Assume that an electron beam carries a total $3+2$ current of $-500 \mu \mathrm{~A}$ in the $\overline{\mathbf{a}}_{z}$ direction, and has a current density Jz that is not a function of ρ or ϕ in the region $0 \leq \rho \leq 10^{-4} \mathrm{~m}$ is zero for $\rho>10^{-4} \mathrm{~m}$. If the electron velocities are given by $\mathrm{v}_{z}=8 \times 10^{7} z \mathrm{~m} / \mathrm{s}$, calculate ρ_{v} at $\rho=0$ and $z=$ (i) 1 mm ; (ii) 2 cm
5. Find the vector magnetic field intensity in $\mathbf{1 0}$ Cartesian coordinates at $\mathrm{p}_{2}(1.5,2,3)$ caused by a current filament of 24 A in the $\overline{\mathrm{a}}_{z}$ direction on the z - axis and extending from :
(a) $z=0$ to $z=6$;
(b) $z=6$ to $z=\infty$;
(c) $z=-\infty$ to $z=\infty$
6. Derive the expression for curl of $\overline{\mathrm{H}}$.
7. For the finite length current element located on the z - axis between $z=z_{1}$ and $z=z_{2}$, using Biot -Savart Law show that

$$
\overline{\mathrm{H}}=\frac{1}{4 \pi \rho}\left[\sin \alpha_{2}-\sin \alpha_{1}\right] \overline{\mathrm{a}} \phi \text { at a point } \mathrm{p}(\rho, \phi, \mathrm{c})
$$

where α_{1} and α_{2} are angles between p and z_{1}, and z_{2} respectively.
8. Derive the magnetic boundary conditions.
9. Derive Maxwell's equation for time - varying field $\mathbf{1 0}$ from Faraday's law and Ampere's circuital law.
10. Write short notes on any two of the following:
(a) Poynting vector
(b) S.W.R.
(c) Boundary conditions for perfect dielectrics.

