BIEE-009

B.TECH. IN ELECTRICAL ENGINEERING (BTELVI) Term-End Examination June, 2013 BIEE-009 : APPLIED ELECTROMAGNETICS

Time : 3 hours

Maximum Marks : 70

- *Note* : Attempt **any seven** questions. All questions carry equal marks.
- 1. Derive the expression for electric field intensity at 10 any point due to a line charge with uniform line charge density $\rho_L c/m$ on the infinitely long z axis.
- 2. (a) Express the field $\overline{F} = 2 xyz \ \overline{a}_x$ 7+3 $-5(x+y+z)\overline{a}_z$ in cylindrical coordinates (variables and components).

(b) Find $|\overline{F}|$ at p($\rho = 2$, $\phi = 60^{\circ}$, z = 3)

- (a) Derive the expression for potential 5 difference V_{AB} in the field of a point charge located at origin.
 - (b) A point charge of 6 nC is located at origin 3+2 in free space. Find V_P if point p is located at p(0.2, -0.4, 0.4) and (i) v = 0 at infinity (ii) v = 0 at (1,0,0)

BIEE-009

P.T.O.

- 4. (a) Derive the continuity equation for current. 5
 - (b) Assume that an electron beam carries a total 3+2

current of -500μ A in the a_z direction, and has a current density Jz that is not a function of ρ or ϕ in the region $0 \le \rho \le 10^{-4}$ m is zero for $\rho > 10^{-4}$ m. If the electron velocities are given by $v_z = 8 \times 10^7 z$ m/s, calculate ρ_v at $\rho = 0$ and z = (i) 1mm; (ii) 2cm

- 5. Find the vector magnetic field intensity in **10** Cartesian coordinates at p_2 (1.5, 2, 3) caused by a current filament of 24A in the $\overline{a_z}$ direction on the z - axis and extending from :
 - (a) z = 0 to z = 6;

(b)
$$z=6$$
 to $z=\infty$;

- (c) $z = -\infty$ to $z = \infty$
- 6. Derive the expression for curl of \overline{H} . 10
- 7. For the finite length current element located on **10** the *z* axis between $z = z_1$ and $z = z_2$, using Biot -Savart Law show that

$$\overline{H} = \frac{1}{4\pi\rho} \left[\sin\alpha_2 - \sin\alpha_1 \right] \overline{a}_{\phi} \text{ at a point } p(\rho, \phi, c)$$

where α_1 and α_2 are angles between p and $z_{1,}$ and z_2 respectively.

BIEE-009

- 8. Derive the magnetic boundary conditions. 10
- Derive Maxwell's equation for time varying field 10 from Faraday's law and Ampere's circuital law.
- **10.** Write short notes on *any two* of the following :

5x2=10

- (a) Poynting vector
- (b) S.W.R.
- (c) Boundary conditions for perfect dielectrics.