No. of Printed Pages : 3

BIEE-005

B.Tech. IN ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

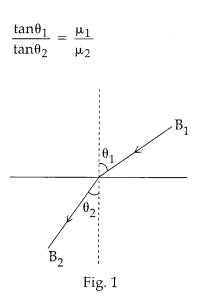
June, 2013

BIEE-005 : ELECTROMAGNETIC THEORY

Time : 3 hours

01057

Maximum Marks: 70


Note : Answer any seven questions. All the questions carry equal marks. All the questions are to be answered in English Language only.

- State and prove Gauss's theorem ? Give one 10 application also.
- Explain the concept of electric field and electric 10 potential and derive expression for electric field intensity due to point charge.
- (a) What are Poisson's and Laplace 5 equations? Write Laplace's equation in Cartesian, cylindrical and spherical coordinates.
 - (b) Determine whether or not the following 5 potential fields satisfy the Laplace's equation.

(i)
$$V = x^2 - y^2 + z^2$$

(ii) $V = r\cos\phi + z$

4. Establish the boundary conditions for the **10** tangential component of \overrightarrow{H} at the boundary between two isotropic, homogeneous materials with permeabilities μ_1 and μ_2 show that from given Fig. 1 that :

- Discuss the energy stored in electric and magnetic 10 field.
- 6. Write Maxwell's equations in integral and point 10 form for static fields and explain physical significance of the equations ? Explain how they are modified for time varying electric and magnetic fields.

- 7. A lossy dielectric has $\mu_r = 1$, $\epsilon_r = 50$ and 10 $\sigma = 60 \text{ U} / \text{m}$ at 15.9 MHz. Find α , β , ν and η if the uniform plane wave is travelling through this medium.
- Derive the relation for Poynting theorem and 10 show that this relation can be used to explain the power transmitted.
- Derive transmission line voltage and current 10 equations. Discuss the concept of distortionless and lossless line.
- **10.** Write a short notes on *any two* of the following :
 - (a) Wave polarization

5+5=10

- (b) Smith chart
- (c) Single and double stub matching