B.Tech. ELECTRONICS AND
 - COMMUNICATION ENGINEERING (BTECVI)
 Term-End Examination
 June, 2013

 BIEL-007 : SIGNALS AND SYSTEMS

 BIEL-007 : SIGNALS AND SYSTEMS}

Time : 3 hours

Maximum Marks : 70
Note: Attempt any seven questions. Use of Scientific calculator is allowed.

1. (a) Show that a system described by the following equation is for time varying Parameter system.

$$
2 \times 5=10
$$

$$
y(\mathrm{t})=(\sin \mathrm{t}) x(\mathrm{t}-2)
$$

(b) What is the total energy of the rectangular pulse shown in fig (i)?

Fig. (i)
2. Consider the system shown in fig (ii)

$$
y(t)=x^{2}\left(t-t_{0}\right)+2
$$

Fig. (ii)

Determine whether the system is :
(a) linear
(b) stable and
(c) causal.

Justify your answer.
3. For a continuous LTI system with the impulse response
$h(t)=6 e^{-t}(u t)$, determine the system response to the $\mathrm{i} / \mathrm{P} 2 \mathrm{u}(\mathrm{t})$.
4. (a) Determine the particular solution of the difference equation

$$
\begin{aligned}
& y[\mathrm{n}]-2 y[\mathrm{n}-1]+3 y[\mathrm{n}-2]=x[\mathrm{n}] \\
& \text { where } x[\mathrm{n}]=3^{\mathrm{n}}, \mathrm{n}>0
\end{aligned}
$$

(b) Consider the RL circuit shown in fig (iii), find the differential equation relating the output voltage $y(t)$ across R and the input voltage $x(\mathrm{t})$

Fig. (iii)
5. Determine DFT of the sequence
(a) $x[n]= \begin{cases}1 / 4 & 0 \leq n \leq 2 \\ 0 & \text { otherwise }\end{cases}$
(b) Determine the fourier transform of the signal

5 $x(\mathrm{t})=\mathrm{t} \cos \mathrm{At}$
6. Find the trignometric fourier series of the $\mathbf{1 0}$ waveform shown in fig (iv)

Fig. (iv)
7. Fig (v) shows a Lowpass RC network. Find the $\mathbf{1 0}$ output if the input signal is $x(\mathrm{t})=\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$

Fig. (v)
8. Determine the inverse z transform of $\mathbf{1 0}$

$$
\mathrm{s}[z]=\frac{2}{2-3 z^{-1}+z^{-2}} \text { when ROC }:|z|<1 / 2
$$

9. Find the system function $\mathrm{H}(\mathrm{z})$ and unit sample $\mathbf{1 0}$ response $h(n)$ of the system whose difference equation is given by
$y[n]=\frac{1}{2} y[n-1]+2 x[n]$
The $y[n]$ and $x[n]$ are output and input respectively.
10. Write short notes on any two:
$2 \times 5=10$
(a) Properties of z transform
(b) Properties of fourier transform
(c) Basic operations on signal.
