BIEL-006

	B.Tech. ELECTRONICS AND
\bigcirc	COMMUNICATION ENGINEERING
≪	(BTECVI)
lal en nge ei	Term End Examination
C (2)	Term-end examination
	June, 2013

BIEL-006 : ELECTROMAGNETIC FIELD THEORY

Time : 3 hoursMaximum Marks : 70

Note : All questions carry equal marks. Attempt any seven questions out of Ten questions. Use of scientific calculator is allowed

- (a) Discuss the experimental low of Coulomb's 5 for two charged particles.
 - (b) Prove that the field of a sheet of charge is 5 $E = \frac{\rho_s}{2\epsilon_0} a_{N.}$ Where ρ_s is surface charge density, and a_N is unit vector.
- 2. (a) Consider two vectors A and B, where 5 $A = 4 \overrightarrow{a_y} + 10 \overrightarrow{a_z}$ and $B = 2 \overrightarrow{a_x} + 3 \overrightarrow{a_y}$ determine the projection of A on B
 - (b) Determine the angle between two vector A 5 and B. if :

$$A = 2 \overrightarrow{a}_{x} + \overrightarrow{a}_{y} \quad B = 2 \overrightarrow{a}_{x} + 2 \overrightarrow{a}_{y} - 2 \overrightarrow{a}_{z}$$

BIEL-006

3.	Consider three points P $(1, -3, 5)$ Q $(2, 4, 6)$ and R $(0, 3, 8)$ are in cartesian coordinates. Determine	
	(a) The distance vector VQR. 2x5	=10
	(b) The area of triangle PQR.	
4.	Discuss the divergence of a vector field.	10
5.	Derive the expression for energy stored in a capacitor, when an electric field E is present.	10
6.	State and explain poynting theorem.	10
7.	In a lossless transmission line prove that the propagation constants α = 0 and β = w \sqrt{LC}	10
8.	A transmission line has characteristic impedance of 75 ohm and a phase constant of $3rad/m$ at $100MH_z$. Determine the capacitance and inductance of the line per meter	10
9.	Prove that the skin depth in a good conductor is	10

$$\delta = \frac{1}{\sqrt{2\pi \ f\mu\sigma}}$$

10. Answer *any two* of the following : 2x5=10

- (a) BIOT SAVART LAW
- (b) Depth of penetration
- (c) VSWR

BIEL-006