B.TECH. ELECTRONICS AND
 \rightarrow COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2013

BIEL-003 : DIGITAL ELECTRONICS

Time : 3 hours

Maximum Marks : 70
Note: Attempt seven questions in all. All the questions to be answered in English-language only.

1. (a) Subtract using r's complement 5 $(0.1101)_{2}-(111.01)_{2}$
(b) Convert the BCD number (011110010001) 5 to its decimal equivalent.
2. (a) Proof of De-Morgan's theorem using Truth 5 table.
(b) Simplify using k-map the given function. 5 $F(A, B, C, D)=\pi M(0,3,5,11,13,14,15)$
$+d(7,8,9,12)$
3. (a) Design 4 bit Gray to Binary code converter 5 using 1:16 demultiplexer (with active low output).
(b) Design 4:16 line decoder using 3:8 decoders. 5
4. (a) Realise the function using 16:1 MUX
$f(w, x, y, z)=\sum m(0,3,4,7,9,13,15)$
(b) Combinational circuit is defined by the

5 function
$\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(3,5,6,7)$
$\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,2,4,7)$
implement the circuit with PLA.
5. (a) Draw ASM chart for 2-bit down counter having one enable input x, count is enabled if $x=0$ and disable if $x=1$.
(b) Design a MOD-5 counter of states ($0,3,4$, 5 6,7). Ensure that all unused states reset to zero automatically.
6. (a) Draw the logic diagram of D flip-flop and 5 write characteristic table.
(b) Draw the logic diagram of T flip-flop and 5 write excitation table.
7. (a) Construct 16×8 RAM memory using 16×4 5 RAM memory ICs.
(b) Design a BCD to Excess-3 code converter 5 using PLA.
8. (a) Design MOD-10/ Decode/BCD

5
synchronous counter using J - K flip flop.
(b) What happens if any input of TTL circuit is

5 kept floating ?
9. (a) Design a BCD to seven segment decoder 5 using PROM.
(b) Design a BCD to seven segment decoder 5 using PLA.
10. (a) Write a short note on Gray Code. 5
(b) Write a short note on Excess-3 Code. 5

