B.TECH. ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2013

BIEL-003: DIGITAL ELECTRONICS

Time: 3 hours		ours Maximum Marks.	Maximum Marks: 70	
Note :		Attempt seven questions in all. All the questions to be answered in English-language only.		
1.	(a)	Subtract using r 's complement $(0.1101)_2 - (111.01)_2$	5	
	(b)	Convert the BCD number (011110010001) to its decimal equivalent.	5	
2.	(a)	Proof of De-Morgan's theorem using Truth table.	5	
	(b)	Simplify using k-map the given function. F (A, B, C, D) = π M (0, 3, 5, 11, 13, 14, 15) + d (7, 8, 9, 12)	5	
3.	(a)	Design 4 bit Gray to Binary code converter using 1:16 demultiplexer (with active low output).	5	
	(b)	Design 4:16 line decoder using 3:8 decoders.	5	

4. (a) Realise the function using 16:1 MUX 5

$$f(w, x, y, z) = \sum m(0, 3, 4, 7, 9, 13, 15)$$

(b) Combinational circuit is defined by the 5

- (b) Combinational circuit is defined by the function $F_1(A, B, C) = \sum (3, 5, 6, 7)$ $F_2(A, B, C) = \sum (0, 2, 4, 7)$
- 5. (a) Draw ASM chart for 2-bit down counter 5 having one enable input x, count is

enabled if x = 0 and disable if x = 1.

implement the circuit with PLA.

- (b) Design a MOD-5 counter of states (0, 3, 4, 6, 7). Ensure that all unused states reset to zero automatically.
- 6. (a) Draw the logic diagram of D flip-flop and 5 write characteristic table.
 - (b) Draw the logic diagram of T flip-flop and 5 write excitation table.
- 7. (a) Construct 16×8 RAM memory using 16×4 5 RAM memory ICs.
 - (b) Design a BCD to Excess-3 code converter using PLA.
- 8. (a) Design MOD-10/ Decode/BCD 5 synchronous counter using J K flip flop.
 - (b) What happens if any input of TTL circuit is kept floating?

9.	(a)	Design a BCD to seven segment decoder using PROM.	5
	(b)	Design a BCD to seven segment decoder using PLA.	5
10.	(a)	Write a short note on Gray Code.	5
	(b)	Write a short note on Excess-3 Code.	5