B.TECH. IN ELECTRONICS AND - COMMUNICATION ENGINEERING
 (BTECVI)

Term-End Examination

 June, 2013
BIEL-002 : ANALOG INTEGRATED CIRCUITS DESIGN

Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note: (i) Attempt any seven questions.
(ii) Use of scientific calculator is permitted.

1. (a) What should be the Ideal Char of an OP-AMP ? Distinguish between virtual ground and actual ground.
(b) Explain the meaning of bias offset and drift voltage for an OP - AMP.
2. (a) Derive the expression for CMRR of an 4 OP-AMP.
(b) Find the output voltage $\left(\mathrm{V}_{0}\right)$ for circuit given 6 in figure (1)

3. (a) Explain how an OP - AMP can be used as a 5differentiator.
(b) Explain how square and triangular 5waveforms can be produced usingOP-AMP.
4. (a) Draw the circuit diagram of a sample and 6 hold circuit using OP - AMP IC 741. Explain its operation.
(b) What are the power supply considerations 4 of OP - AMP ?
5. (a) Construct a monostable multivibrator using 5 555 timer and explain its operation.
(b) Explain with block diagram how a PLL can 5 be used as a frequency multiplier.
6. (a) Design a first - order HP Butter worth filter 5 with cut - off frequency of 100 Hz and high frequency gain of 10 .
(b) Show that normalized gain of an $n^{\text {th }}$ order 5
Butterworth LP filter rolls off at a rate of $20 \mathrm{ndB} /$ decade for away beyond cut off.
7. (a) Draw the circuit diagram of V to F converter 5 and explain its operation.
(b) Explain how OP-AMP is used as saw - tooth 5 wave generator.
8. (a) Design a notch filter with center frequency, 5 $\mathrm{f}_{\mathrm{o}}=400 \mathrm{~Hz}$, center frequency gain, $\mathrm{A}_{0}=2$ and $Q=10$.
(b) Draw the block diagram of PLL IC 565 and 5 explain function of each block.
9. (a) Explain the following terms for PLL: 6
(i) Free running frequency
(ii) Lock range
(b) What is a VCO ? What is the role served by 4 the VCO in a PLL Chip?
10. Attempt any two of the followings :
$2 \times 5=10$
(a) Schmitt Trigger
(b) Peak detector
(c) Instrumentation Amplifier
